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Ranking on Graphs: PageRank
§ Webpages are no longer independent
§ Rank the webpages by their importance/relevance
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More Applications
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Recommender System [Gori’07] Social Network Analysis [Weng’10]

Biology [Singh’07]Sports Team Management [Radicchi’11]
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PageRank: Formulation
§ Assumption:

– A webpage is important if it is linked by many other webpages

§ Formulation:
– Iteratively solve the following linear system

𝐫 = 𝑐𝐀𝐫 + 1 − 𝑐 𝐞
– Mathematically elegant, only topological information is needed

§ Many Variants Exist:
– Personalized PageRank
– Random Walk with Restart
– And so on
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Why Auditing PageRank?
§ Problem: end-users do not understand how the 

results were derived

§ Potential Outcomes:
– Render crucial explainability of ranking algorithms
– Optimize network topology
– Identify vulnerabilities in the network (e.g. preventing 

adversarial attacks)
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Roadmap
§ Motivations
§ AURORA Formulation
§ AURORA Algorithms
§ AURORA Generalizations
§ Experimental Results
§ Conclusions
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Prob. Def.: PageRank Auditing Problem
§ Given:

– (1) adjacency matrix 𝐀; 
– (2) PageRank 𝐫; 
– (3) loss function over PageRank vector 𝑓(𝐫); 
– (4) user-specific element type (edges vs. nodes vs. subgraph); 
– (5) integer budget 𝑘.

§ Find: a set of k influential graph elements 

§ Intuitive Example:
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AURORA Formulation
§ Intuition: find a set of influential elements that have 

largest impact on the loss function over PageRank 
vector.

§ Optimization Problem:

§ Choices of Loss Function:
– Squared Frobenius norm in this paper
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max
0

∆𝑓 = 𝑓 𝐫 − 𝑓 𝐫0
2

𝑠. 𝑡. 𝑆 = 𝑘
impact of set S on the loss function
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Challenges
§C1: Measure of Influence
§C2: Optimality
§C3: Scalability
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Challenges
§ C1: Measure of Influence

– Understanding Black-box Machine Learning Models
• Quantify influence by perturbing features or training data.
• Obs: Inconsistent with unsupervised graph ranking settings.

– Influence Maximization
• Measure the size of ‘infected’ nodes in information propagation 

process.
• Obs: fundamentally different from finding influential elements in 

graph ranking settings.

– Question: how to define the influence in the context of graph 
ranking? 
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Challenges
§ C2: Optimality

– Finding a set of influential graph elements is NP due 
to its combinatorial nature.

– Question: how to find a set of influential graph 
elements accurately?

§ C3: Scalability
– Question: how to scale up the influential elements 

finding process?
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Definition: Graph Element Influence
§ Graph Element Influence

– The influence of an edge (𝑖, 𝑗) is defined as the derivative of 𝑓(𝐫) w.r.t.
the edge.

– The influence of a node 𝑖 is defined as the aggregation of all in and out 
edges.

– The influence of a subgraph 𝑆 is defined as the aggregation of all edges 
in the subgraph.
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𝕀 𝑖, 𝑗 =
d𝑓(𝐫)
d𝐀(𝑖, 𝑗)

𝕀 𝑖 = <
=>?,=@A

B

𝕀 𝑖, 𝑗 + 𝕀 𝑗, 𝑖

𝕀 𝑖 = <
A,=∈0

B

𝕀 𝑖, 𝑗
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Calculating Influence
§ Method:

– Define 𝐐 = 𝐈 − 𝑐𝐀 F?, PageRank: 𝐫 = 1 − 𝑐 𝐐𝐞

– Apply chain rule

§ Matrix Form Solution:

– Limitation: 𝐐G𝐫𝐫′ is an 𝑛×𝑛 full matrix, need 𝑂(𝑛2) space
– Question: how to scale up to large graphs? 
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𝜕𝑓(𝐫)
𝜕𝐀(𝑖, 𝑗)

= Tr[(
𝜕𝑓 𝐫
𝜕𝐫

)′
𝜕𝐫

𝜕𝐀 𝑖, 𝑗
] = 2𝑐𝐫 𝑗 Tr[𝐫G𝐐 : , 𝑖 ]

where ST(𝐫)
S𝐀

= 2𝑐𝐐G𝐫𝐫′, each element in ST(𝐫)
S𝐀

is ST(𝐫)
S𝐀(A,=)

d𝑓(𝐫)
d𝐀 =

𝜕𝑓(𝐫)
𝜕𝐀 +

𝜕𝑓 𝐫
𝜕𝐀

G

− diag
𝜕𝑓 𝐫
𝜕𝐀

𝜕𝑓(𝐫)
𝜕𝐀

, if 𝐀 is undirected graph

, if 𝐀 is directed graph
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Scale Up
§ Solution: exploring low-rank structure

– Note that PageRank 𝐫 = 1 − 𝑐 𝐐𝐞

– Reduce 𝑂(𝑛2) space to 𝑂(𝑛) space
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𝜕𝑓(𝐫)
𝜕𝐀 = 2𝑐𝐐G𝐫𝐫′

A personalized PageRank vector Original PageRank vector

×

=

2𝑐𝐐G𝐫 𝐫′

𝜕𝑓(𝐫)
𝜕𝐀
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Roadmap
§ Motivations
§ AURORA Formulation
§ AURORA Algorithms
§ AURORA Generalizations
§ Experimental Results
§ Conclusions
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AURORA Algorithms
§ Goal: select a set of 𝑘 influential graph elements
§ Observation:

– ST(𝐫)
S𝐀

is a non-negative matrix, so does WT(𝐫)
W𝐀

.

– Enjoys diminishing returns property          submodular function

§ Greedy Strategy:
– iteratively select the most influential element in each round;
– remove the selected element and re-rank;
– repeat above procedure 𝑘 rounds.

§ Challenges: computationally expensive to calculate ST(𝐫)S𝐀

§ How to speed up?        power iterations
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Roadmap
§ Motivations
§ AURORA Formulation
§ AURORA Algorithms
§ AURORA Generalizations
§ Experimental Results
§ Conclusions
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AURORA Generalizations: Normalized PageRank

§ Intuition: normalize PageRank vector to magnitude of 1
§ Key Idea: divide each PageRank score with the sum of 

all PageRank scores
§ Formulation:

– Let 𝑆 𝐫 = ∑A>?B 𝐫(𝑖), then

§ Solution: apply similar strategy as AURORA

§ More details in the paper
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ST(𝐫)
S𝐀 = 𝑐𝐐G(− 𝟐T(𝐫)

0(𝐫) 𝟏 +
𝟐
0(𝐫) 𝐫)𝐫′
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AURORA Generalizations: NoN
§ NoN (Network of Networks) is defined as a triplet            
< 𝐆,𝑨, 𝜃 >.
– 𝐆: main network
– 𝑨: domain-specific networks
– 𝜃: mapping function

§ Ranking on NoN:

– equivalent to PageRank with transition matrix 𝐖 = a
ab2c𝐀 +

2c
ab2c 𝐘

§ Solution: Apply similar strategy as AURORA

- 19 -

min 𝐽 𝐫 = 𝑐𝐫′ 𝐈B − 𝐀 𝐫 + 1 − 𝑐 𝐫 − 𝐞 g
2 + 2𝑎𝐫′𝐘𝐫

within-network smoothness query preference cross-network consistency

[1] Ni, J., Tong, H., Fan, W., & Zhang, X. (2014, August). Inside the atoms: ranking on a network of networks. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1356-1365). ACM.
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AURORA Generalizations: Attributed Networks
§ Intuition: find influential attributes in attributed networks.

§ Key Idea: treat attributes as attribute nodes and form an augmented graph.

§ Supporting Node Attributes:
– (1) 𝐀: node-to-node adjacency matrix; 

(2) 𝐖: attribute-to-node adjacency matrix.

– Form an augmented graph 𝐆 = 𝐀 𝐖′
𝐖 𝐀′

§ Supporting Edge Attributes:
– Let 𝐀 be an 𝑛×𝑛 adjacency matrix and 𝑥 be the number of different 

edge attributes.

– Embed edge attributes into edge-nodes.
– Form an (𝑛 + 𝑥)×(𝑛 + 𝑥) augmented graph.

§ Solution: Apply similar strategy as AURORA
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Node attributes: different shapes
Edge attributes: straight vs. curved lines

[1] Tong, H., Faloutsos, C., Gallagher, B., & Eliassi-Rad, T. (2007, August). Fast best-effort pattern matching in large attributed graphs.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 737-746). ACM.
[2] Pienta, R., Tamersoy, A., Tong, H., & Chau, D. H. (2014, October). Mage: Matching approximate patterns in richly-attributed graphs.
In Big Data (Big Data), 2014 IEEE International Conference on (pp. 585-590). IEEE.
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Roadmap
§ Motivations
§ AURORA Formulation
§ AURORA Algorithms
§ AURORA Generalizations
§ Experimental Results
§ Conclusions
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Datasets
§ Over 10+ real-world datasets
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Experimental Settings
§ Evaluation Metric

– Effectiveness: difference in 𝑓(𝑟)
– Efficiency: running time

§ Baseline Methods
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AURORA (Our Methods) Baseline Methods
q AURORA-E q Brute force
q AURORA-N q Random selection
q AURORA-S q Top-k degree

q PageRank
q HITS
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Effectiveness: Fixed Budget 
(Higher is Better)
§ Observation: AURORA outperforms baseline methods
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§ Observation: AURORA outperforms baseline methods

Effectiveness (Higher is better)
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Efficiency
§ Observation: linear complexity w.r.t. 𝑘 and 𝑚
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Case Study on Airport Dataset
§ Goal: find important airline routes and 

airports
§ Results:
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Task PageRank AURORA
Edge Auditing ATL-LAS DEN-ATL

ATL-DFW LAX-ORD
Node Auditing SFO CLT

DEN serves as a major hub 
airport to connect west and 
east coasts

It directly connects Los 
Angeles (LAX) and Chicago 
(ORD), two largest cities in 
United States.

Busiest Airports: CLT(6th) > SFO (7th)
Proximity: existence of LAX and SJC
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Case Study on NBA Dataset
§ Goal: find a team in collaboration network
§ Query: Allen Iverson
§ Results:
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Task PageRank AURORA

Subgraph Auditing 
(Graph size: 5)

Allen Iverson
Larry Hughes
Theo Ratliff
Joe Smith

Drew Gooden

Allen Iverson
Larry Hughes
Theo Ratliff
Joe Smith

Tim Thomas

NEVER played with Allen Iverson.
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Conclusions
§ Problem: 

– PageRank Auditing Problem

§ Solution:
– Family of AURORA algorithms
– Near-optimal results
– Scalability

§ Results:
– Outperform other baseline methods
– Achieves linear time complexity
– Finds intuitive and meaningful explanations

§ More details in the paper
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our method

linear complexity


