| D} @Vé Tencent iR,

HUAWEI

AURORA: Auditing PageRank on
Large Graphs

Presented By Jian Kang

)u
\ 1}

Jian Kang Meijia Wang Nan Cao Yinglong Xia Wei Fan | Hanghang Tong

DALA Arizona State University



Ranking on Graphs: PageRank

= Webpages are no longer independent

= Rank the webpages by their importance/relevance
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More Applications
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PageRank: Formulation

= Assumption:

— A webpage is important if it is linked by many other webpages

* Formulation:

— lteratively solve the following linear system
r=cAr+ (1 ——c)e

— Mathematically elegant, only topological information is needed

= Many Variants Exist: T (5 e
— Personalized PageRank SN
— Random Walk with Restart S W |

— =L <

— And so on " \ig»\
3

DG.LA Arizona State University



Why Auditing PageRank?

" Problem: end-users do not understand how the
results were derived

= Potential Outcomes:
— Render crucial explainability of ranking algorithms
— Optimize network topology

— ldentify vulnerabilities in the network (e.g. preventing
adversarial attacks)
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Roadmap

= Motivations

= AURORA Formulation

= AURORA Algorithms

= AURORA Generalizations

= Experimental Results

= Conclusions
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Prob. Def.: PageRank Auditing Problem

(1) adjacency matrix A;
(2) PageRank r;

(4) user-specific element type (edges vs. nodes vs. subgraph);

(5) integer budget k.

)
)
(3) loss function over PageRank vector f(r);
)
)

* Find: a set of k influential graph elements

= [ntuitive Example:
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AURORA Formulation

= |ntuition: find a set of influential elements that have
largest impact on the loss function over PageRank
vector.

= Optimization Problem: ,
max Af = (f(r) — f(rs))

S
impact of set S on the loss function

s.t. |S|=k
= Choices of Loss Function:
— Square TABLE II: Choices of f(-) functions and their derivatives

Descriptions | Functions | Derivatives
o p—2
Lp norm f(r) =||rllp a_{ _ %
P
i — log( S exp(r(i of _ _exp(r(i))
Soft maximum | f(r) =log(}_ exp(r(i))) | 55y =[]
=1 > exp(r(i)
=1
Energy norm f(r) =r'Mr % =(M+ M')r

(M in Energy Norm is a Hermitian positive definite matrix.)
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Challenges
= C1: Measure of Influence

= C2: Optimality
= C3: Scalability
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Challenges

= C1: Measure of Influence

— Understanding Black-box Machine Learning Models
* Quantify influence by perturbing features or training data.
* Obs: Inconsistent with unsupervised graph ranking settings.

— Influence Maximization

« Measure the size of ‘infected’ nodes in information propagation
process.

« Obs: fundamentally different from finding influential elements in
graph ranking settings.
— Question: how to define the influence in the context of graph
ranking?

[1] Adler, P., Falk, C., Friedler, S. A, Nix, T., Rybeck, G., Scheidegger, C., Smith, B., & Venkatasubramanian, S. (2018). Auditing black-
box models for indirect influence. Knowledge and Information Systems, 54(1), 95-122.
[2] Koh, P. W., & Liang, P. (2017, July). Understanding Black-box Predictions via Influence Functions. In International Conference on

Machine Learning (pp. 1885-1894). ]
[3] Kempe, D., Kleinberg, J., & Tardos, E. (2003, August). Maximizing the spread of influence through a social network. In Proceedings

of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 137-146). ACM.
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Challenges
= C2: Optimality

— Finding a set of influential graph elements is NP due
to its combinatorial nature.

— Question: how to find a set of influential graph
elements accurately?

= C3: Scalability

— Question: how to scale up the influential elements
finding process?
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Definition: Graph Element Influence

= Graph Element Influence

— The influence of an edge (i, ) is defined as the derivative of f(r) w.r.t.
the edge.

df (r)
dA(i, )

I(,j) =

— The influence of a node i is defined as the aggregation of all in and out
edges.

1= ) 16G)+10,)

j=1,j#i

— The influence of a subgraph S is defined as the aggregation of all edges

in the subgraph.
n
10 = ) 16,7

i,JES
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Calculating Influence

= Method:
— Define Q = (I — cA)™ !, PageRank: r = (1 — ¢)Qe

— Apply chain rule
of () _ . Of)., or
oAt - ) aaa
= Matrix Form Solution:

0r@) (0 @Y _ . (0F(®)
df () _ 7oA ( oA ) lag< 9A
dA of (r)
\ 0A

af (r)
0A

] = 2cr(HTr[r'QC:, D]

) , if A is undirected graph

, if A is directed graph

— 2¢Q'rr', each element in L& jg 9/®)

where —= A AGL)

— Limitation: Q'rr’ is an nxn full matrix, need 0(n?) space

— Question: how to scale up to large graphs?
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Scale Up

= Solution: exploring low-rank structure

— Note that PageRank r = (1 — ¢)Qe
o™ oer
= 2cQ'rr

6A7—

A personalized PageRank vector Original PageRank vector

2cQ’ r
u:\ af (r)
JA

— Reduce 0(n?) space to 0(n) space
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Roadmap

= Motivations

= AURORA Formulation

= AURORA Algorithms

= AURORA Generalizations

= Experimental Results

= Conclusions
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AURORA Algorithms

= Goal: select a set of k influential graph elements

= Observation:

~ YW s a non- negative matrix, so does —— AL

dA da -
— Enjoys diminishing returns property === submodular function
= Greedy Strategy:
— iteratively select the most influential element in each round;
— remove the selected element and re-rank;

— repeat above procedure k rounds.

af (r)

= Challenges: computationally expensive to calculate —= A

= How to speed up? == power iterations
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Roadmap

= Motivations

= AURORA Formulation

= AURORA Algorithms

= AURORA Generalizations

= Experimental Results

= Conclusions
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AURORA Generalizations: Normalized PageRank
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Intuition: normalize PageRank vector to magnitude of 1

Key Idea: divide each PageRank score with the sum of
all PageRank scores

Formulation:
— LetS(r) =YL, r(i), then

d 2 /
L0 = cq'(- 3{2&?1 +%r)r

Solution: apply similar strategy as AURORA

More detalls in the paper
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AURORA Generalizations: NoN

= NoN (Network of Networks) is defined as a triplet
<GA2-0 >.

— G: main network

vosi
05/
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— 6: mapping function

= Ranking on NoN:
min J(r) = cr'(1,, — A)r+ (1 —¢)|lr — e||? + 2ar'Yr

within-network smoothness query preference cross-network consistency

- equivalent to PageRank with transition matrix W = ——— Ciza

= Solution: Apply similar strategy as AURORA

[11 Ni, J., Tong, H., Fan, W., & Zhang, X. (2014, August). Inside the atoms: ranking on a network of networks. In Proceedings of the

20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1356-1365). ACM.



AURORA Generalizations: Attributed Networks

Intuition: find influential attributes in attributed networks.

Key Idea: treat attributes as attribute nodes and form an augmented graph.

Supporting Node Attributes:

— (1) A: node-to-node adjacency matrix; IS
(2) W: attribute-to-node adjacency matrix.
— Form an augmented graph G = (A W’) B
W A Node attributes: different shapes
| Supporting Edge Attributes: Edge attributes: straight vs. curved lines

— Let A be an nxn adjacency matrix and x be the number of different
edge attributes.

— Embed edge attributes into edge-nodes.

— Form an (n + x)X(n 4+ x) augmented graph.

Solution: Apply similar strategy as AURORA

[1] Tong, H., Faloutsos, C., Gallagher, B., & Eliassi-Rad, T. (2007, August). Fast best-effort pattern matching in large attributed graphs.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 737-746). ACM.

[2] Pienta, R., Tamersoy, A., Tong, H., & Chau, D. H. (2014, October). Mage: Matching approximate patterns in richly-attributed graphs.
In Big Data (Big Data), 2014 IEEE International Conference on (pp. 585-590). IEEE.




Roadmap

= Motivations

= AURORA Formulation

= AURORA Algorithms

= AURORA Generalizations

= Experimental Results

= Conclusions
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Datasets

= Qver 10+ real-world datasets

Category Network | Type Nodes Edges
Karate U 34 78
SOCIAL D(?lphins U 62 159
WikiVote D 7,115 103,689
Pokec D 1,632,803 | 30,622,564
GrQc U 5,242 14,496
DBLP U 42,252 420,640
NBA U 3,923 127,034
COLLABORATION | o ppip | D 12,591 49,743
cit-HepTh D 27,770 352,807
cit-HepPh D 34,546 421,578
PHYSICAL Airport D 1,128 18,736
OTHERS Lesmis U 77 254
Amazon D 262,111 1,234,877

(In Type, U means undirected graph; D means directed graph.)
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Experimental Settings

= Evaluation Metric

— Effectiveness: difference in f(r)

— Efficiency: running time

= Baseline Methods

AURORA (Our Methods) Baseline Methods
0 AURORA-E Q Brute force

0 AURORA-N L Random selection
0 AURORA-S U Top-k degree

U PageRank
Q HITS

-23 -
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Effectiveness: Fixed Budget
(Higher is Better)

= Observation: AURORA outperforms baseline methods

Auditing by Edges
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Effectiveness (Higher is better)
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Auditing by Edges

| =@= AURORA-E
1 == PageRank
| =pg= HITS

7| =@= random

== degree

w—o-o- Sy =y gy &

8 10

our method

change

= Observation: AURORA outperforms baseline methods

Auditing by Nodes

0.07

0.06 -

0.05

0.04

0.03

0.02

0.01 A

0.00 -

—t

our method
—kx’ A

=@= AURORA-N
=f= PageRank
=)é= HITS

=il= degree

Auditing by Subgraphs

=9 =§ P=§=p i ¥ o
; i e

k

| =@= AURORA-S
=f= PageRank
1 == HITS

== degree

1 =@= random

our method

Arizona State University



Efficiency

= Observation: linear complexity w.r.t. k and m

~ ~—
) 31 —@= AURORA-E N 25
Py | == AURORA-N S
— | == AURORA-S — 2.0
X 21 X
~— ~1.5
g g Lo —@— AURORA-E
= 1 = = AURORA-N
c C o5 —#— AURORA-S
=) = ' , ,
— 3 1 G 3 10 = 10 20 30
k # of edges (x10Y)
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Case Study on Airport Dataset

= Goal: find important airline routes and

al rpo rtS ‘ D y ’D“e'wcr International 8 H
" Results: o "
Task PageRank AURORA | DEN serves as a major hub
' d
Edge Auditing |  ATL-LAS DENFATL | | ooctcomete el
ATL-DFW LAX-ORD \

Node Auditing SFO It directly connects Los

Angeles (LAX) and Chicago
/ (ORD), two largest cities in

United States.

Busiest Airports: CLT(6th) > SFO (7th)
Proximity: existence of LAX and SJC
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Case Study on NBA Dataset

= Goal: find a team in collaboration network

= Query: Allen lverson

= Results:

Task PageRank AURORA
Allen lverson Allen lverson
" Larry Hughes Larry Hughes
S‘zg?;aﬁhsiAZ“ec_j'g;‘g Theo Ratliff Theo Ratliff
P ' Joe Smith Joe Smith
LDrew Gooden | Tim Thomas

\

NEVER played with Allen Iverson.

- 28 -
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Roadmap

= Motivations

= AURORA Formulation

= AURORA Algorithms

= AURORA Generalizations

= Experimental Results

= Conclusions
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Conclusions

* Problem:
— PageRank Auditing Problem

~

potential
influential
edges

potential
influential
node

-

= Solution:

— Family of AURORA algorithms o 2N J
— Near-optimal results o Auditing by Edges
9% =@= AURORA-E
_ ili I (- *
Scalability P o z‘i::;‘;; /‘“,. S o
™ o4 A
* Results: X I
< 0.01 -
— Outperform other baseline methods  ««&s-w-=s=9:9=3=4:4
: . : . K linear complexity
— Achieves linear time complexity — j ,
— Finds intuitive and meaningful explanations =, == hvromas
= More details in the paper £
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