

AURORA: Auditing PageRank on Large Graphs

Presented By Jian Kang

Jian Kang Meijia Wang

Nan Cao

Wei Fan

Hanghang Tong

Arizona State University

- 1 -

Ranking on Graphs: PageRank

- Webpages are no longer independent
- Rank the webpages by their importance/relevance

More Applications

Recommender System [Gori'07]

****** (8) \$60.00

Sports Team Management [Radicchi'11]

Social Network Analysis [Weng'10]

Biology [Singh'07]

PageRank: Formulation

Assumption:

- A webpage is important if it is linked by many other webpages

Formulation:

- Iteratively solve the following linear system

$$\mathbf{r} = c\mathbf{A}\mathbf{r} + (1-c)\mathbf{e}$$

Mathematically elegant, only topological information is needed

Many Variants Exist:

- Personalized PageRank
- Random Walk with Restart
- And so on

Why Auditing PageRank?

Problem: end-users do not understand how the results were derived

Potential Outcomes:

- Render crucial explainability of ranking algorithms
- Optimize network topology
- Identify vulnerabilities in the network (e.g. preventing adversarial attacks)

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

Prob. Def.: PageRank Auditing Problem

Given:

- (1) adjacency matrix A;
- (2) PageRank r;
- (3) loss function over PageRank vector $f(\mathbf{r})$;
- (4) user-specific element type (edges vs. nodes vs. subgraph);
- (5) integer budget k.
- Find: a set of k influential graph elements

Intuitive Example:

AURORA Formulation

- **Intuition:** find a set of influential elements that have largest impact on the loss function over PageRank vector.
- Optimization Problem:

$$\max_{S} \Delta f = (f(\mathbf{r}) - f(\mathbf{r}_{S}))^{2}$$

impact of set S on the loss function

Choices of Loss Function:

- Square TABLE II: Choices of $f(\cdot)$ functions and their derivatives

s.t. |S| = k

Descriptions	Functions	Derivatives
L_p norm	$f(\mathbf{r}) = \mathbf{r} _p$	$rac{\partial f}{\partial \mathbf{r}} = rac{\mathbf{r} \circ \mathbf{r} ^{p-2}}{ \mathbf{r} _p^{p-1}}$
Soft maximum	$f(\mathbf{r}) = log(\sum_{i=1}^{n} exp(\mathbf{r}(i)))$	$rac{\partial f}{\partial \mathbf{r}} = [rac{exp(\mathbf{r}(i))}{\sum\limits_{i}exp(\mathbf{r}(i)}]$
Energy norm	$f(\mathbf{r}) = \mathbf{r'} \mathbf{M} \mathbf{r}$	$rac{\partial f}{\partial \mathbf{r}} = (\mathbf{M}^{i=1} + \mathbf{M}')\mathbf{r}$

(M in Energy Norm is a Hermitian positive definite matrix.)

Challenges

C1: Measure of Influence

- C2: Optimality
- C3: Scalability

Challenges

- 10 -

C1: Measure of Influence

- Understanding Black-box Machine Learning Models
 - Quantify influence by perturbing features or training data.
 - **Obs:** Inconsistent with unsupervised graph ranking settings.
- Influence Maximization
 - Measure the size of 'infected' nodes in information propagation process.
 - **Obs:** fundamentally different from finding influential elements in graph ranking settings.
- Question: how to define the influence in the context of graph ranking?

Adler, P., Falk, C., Friedler, S. A., Nix, T., Rybeck, G., Scheidegger, C., Smith, B., & Venkatasubramanian, S. (2018). Auditing blackbox models for indirect influence. *Knowledge and Information Systems*, *54*(1), 95-122.
 Koh, P. W., & Liang, P. (2017, July). Understanding Black-box Predictions via Influence Functions. In *International Conference on Machine Learning* (pp. 1885-1894).
 Kempe, D., Kleinberg, L. & Tardos, É. (2003, August). Maximizing the spread of influence through a social network. In *Proceedings*.

[3] Kempe, D., Kleinberg, J., & Tardos, É. (2003, August). Maximizing the spread of influence through a social network. In *Proceedings* of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 137-146). ACM.

Challenges

C2: Optimality

- Finding a set of influential graph elements is NP due to its combinatorial nature.
- Question: how to find a set of influential graph elements accurately?

C3: Scalability

– Question: how to scale up the influential elements finding process?

Definition: Graph Element Influence

Graph Element Influence

The influence of an edge (*i*, *j*) is defined as the derivative of *f*(**r**) w.r.t.
 the edge.

$$\mathbb{I}(i,j) = \frac{\mathrm{d}f(\mathbf{r})}{\mathrm{d}\mathbf{A}(i,j)}$$

The influence of a node *i* is defined as the aggregation of all in and out edges.

$$\mathbb{I}(i) = \sum_{j=1, j \neq i}^{n} \mathbb{I}(i, j) + \mathbb{I}(j, i)$$

- The influence of a subgraph *S* is defined as the aggregation of all edges in the subgraph.

$$\mathbb{I}(i) = \sum_{i,j\in S}^{n} \mathbb{I}(i,j)$$

Calculating Influence

Method:

- Define $\mathbf{Q} = (\mathbf{I} c\mathbf{A})^{-1}$, PageRank: $\mathbf{r} = (1 c)\mathbf{Q}\mathbf{e}$
- Apply chain rule

$$\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}(i,j)} = \mathrm{Tr}[(\frac{\partial f(\mathbf{r})}{\partial \mathbf{r}})' \frac{\partial \mathbf{r}}{\partial \mathbf{A}(i,j)}] = 2c\mathbf{r}(j)\mathrm{Tr}[\mathbf{r}'\mathbf{Q}(:,i)]$$

Matrix Form Solution:

$$\frac{\mathrm{d}f(\mathbf{r})}{\mathrm{d}\mathbf{A}} = \begin{cases} \frac{\partial f(\mathbf{r})}{\partial \mathbf{A}} + \left(\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}\right)' - \mathrm{diag}\left(\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}\right) &, \text{ if } \mathbf{A} \text{ is undirected graph} \\ \frac{\partial f(\mathbf{r})}{\partial \mathbf{A}} &, \text{ if } \mathbf{A} \text{ is directed graph} \end{cases}$$

where $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}} = 2c\mathbf{Q}'\mathbf{r}\mathbf{r}'$, each element in $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}$ is $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}(i,j)}$

- Limitation: Q'rr' is an $n \times n$ full matrix, need $O(n^2)$ space
- Question: how to scale up to large graphs?

Scale Up

- Solution: exploring low-rank structure
 - Note that PageRank $\mathbf{r} = (1 c)\mathbf{Q}\mathbf{e}$

- Reduce $O(n^2)$ space to O(n) space

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

AURORA Algorithms

Goal: select a set of k influential graph elements

Observation:

- $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}$ is a non-negative matrix, so does $\frac{\mathrm{d}f(\mathbf{r})}{\mathrm{d}\mathbf{A}}$.
- Enjoys diminishing returns property submodular function

Greedy Strategy:

- iteratively select the most influential element in each round;
- remove the selected element and re-rank;
- repeat above procedure k rounds.
- Challenges: computationally expensive to calculate $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}$
- How to speed up? power iterations

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

AURORA Generalizations: Normalized PageRank

- Intuition: normalize PageRank vector to magnitude of 1
- Key Idea: divide each PageRank score with the sum of all PageRank scores
- Formulation:

- Let
$$S(\mathbf{r}) = \sum_{i=1}^{n} \mathbf{r}(i)$$
, then

$$\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}} = c \mathbf{Q}' \left(-\frac{2f(\mathbf{r})}{S(\mathbf{r})}\mathbf{1} + \frac{2}{S(\mathbf{r})}\mathbf{r}\right)\mathbf{r}'$$

- **Solution:** apply similar strategy as AURORA
- More details in the paper

AURORA Generalizations: NoN

- **NoN** (Network of Networks) is defined as a triplet
- < G, A, $\theta >$.
- G: main network
- A: domain-specific networks
- θ : mapping function

Ranking on NoN:

min
$$J(\mathbf{r}) = c\mathbf{r}'(\mathbf{I}_n - \mathbf{A})\mathbf{r} + (1 - c)\|\mathbf{r} - \mathbf{e}\|_F^2 + 2a\mathbf{r}'\mathbf{Y}\mathbf{r}$$

within-network smoothness query preference cross-network consistency – equivalent to PageRank with transition matrix $\mathbf{W} = \frac{c}{c+2a}\mathbf{A} + \frac{2a}{c+2a}\mathbf{Y}$

Solution: Apply similar strategy as AURORA

[1] Ni, J., Tong, H., Fan, W., & Zhang, X. (2014, August). Inside the atoms: ranking on a network of networks. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 1356-1365). ACM.

AURORA Generalizations: Attributed Networks

- Intuition: find influential attributes in attributed networks.
- Key Idea: treat attributes as attribute nodes and form an augmented graph.
- Supporting Node Attributes:
 - (1) A: node-to-node adjacency matrix;
 - (2) W: attribute-to-node adjacency matrix.

- Form an augmented graph
$$\mathbf{G} = \begin{pmatrix} \mathbf{A} & \mathbf{W}' \\ \mathbf{W} & \mathbf{A}' \end{pmatrix}$$

Supporting Edge Attributes:

- 20

- Let A be an *n*×*n* adjacency matrix and *x* be the number of different edge attributes.
- Embed edge attributes into edge-nodes.
- Form an $(n + x) \times (n + x)$ augmented graph.
- **Solution:** Apply similar strategy as AURORA

 Tong, H., Faloutsos, C., Gallagher, B., & Eliassi-Rad, T. (2007, August). Fast best-effort pattern matching in large attributed graphs. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 737-746). ACM.
 Pienta, R., Tamersoy, A., Tong, H., & Chau, D. H. (2014, October). Mage: Matching approximate patterns in richly-attributed graphs. In *Big Data (Big Data), 2014 IEEE International Conference on* (pp. 585-590). IEEE.

Node attributes: different shapes Edge attributes: straight vs. curved lines

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

Datasets

Over 10+ real-world datasets

Network	Туре	Nodes	Edges
Karate	U	34	78
Dolphins	U	62	159
WikiVote	D	7,115	103,689
Pokec	D	1,632,803	30,622,564
GrQc	U	5,242	14,496
DBLP	U	42,252	420,640
NBA	U	3,923	127,034
cit-DBLP	D	12,591	49,743
cit-HepTh	D	27,770	352,807
cit-HepPh	D	34,546	421,578
Airport	D	1,128	18,736
Lesmis	U	77	254
Amazon	D	262,111	1,234,877
	Dolphins WikiVote Pokec GrQc DBLP NBA cit-DBLP cit-HepTh cit-HepPh Airport Lesmis Amazon	DolphinsUWikiVoteDPokecDGrQcUDBLPUNBAUcit-DBLPDcit-HepThDcit-HepPhDAirportDLesmisU	Dolphins U 62 WikiVote D 7,115 Pokec D 1,632,803 GrQc U 5,242 DBLP U 42,252 NBA U 3,923 cit-DBLP D 12,591 cit-HepTh D 27,770 cit-HepPh D 34,546 Airport D 1,128 Lesmis U 77 Amazon D 262,111

(In Type, U means undirected graph; D means directed graph.)

Experimental Settings

Evaluation Metric

- Effectiveness: difference in f(r)
- Efficiency: running time

Baseline Methods

AURORA (Our Methods)	Baseline Methods	
□ AURORA-E	Brute force	
🗖 AURORA-N	Random selection	
🗖 AURORA-S	Top-k degree	
	PageRank	

Effectiveness: Fixed Budget (Higher is Better)

Observation: AURORA outperforms baseline methods

Effectiveness (Higher is better)

Observation: AURORA outperforms baseline methods

Efficiency

Observation: linear complexity w.r.t. k and m

Case Study on Airport Dataset

- Goal: find important airline routes and airports
- Results:

ncounto.	NM MS AL GA		
Task	PageRank	AURORA	DEN serves as a major hub
Edge Auditing	ATL-LAS	DEN-ATL	airport to connect west and east coasts
	ATL-DFW	LAX-ORD	
Node Auditing	SFO	CLT	It directly connects Los
		 Angeles (LAX) and Chicago (ORD), two largest cities in United States. 	
Busiest Airports: CLT(6th) > SFO (7th) Proximity: existence of LAX and SJC			

Case Study on NBA Dataset

- Goal: find a team in collaboration network
- Query: Allen Iverson
- Results:

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

Conclusions

Problem:

PageRank Auditing Problem

Solution:

- Family of AURORA algorithms
- Near-optimal results
- Scalability

Results:

- Outperform other baseline methods
- Achieves linear time complexity
- Finds intuitive and meaningful explanations
- More details in the paper

Arizona State University

k

10

8

