AURORA: Auditing PageRank on Large Graphs

Presented By Jian Kang

Jian Kang Meijia Wang

Nan Cao

Yinglong Xia

Wei Fan

Hanghang Tong

Ranking on Graphs: PageRank

- Webpages are no longer independent
- Rank the webpages by their importance/relevance

More Applications

Recommender System [Gori'07]

Sports Team Management [Radicchi' 11]

Social Network Analysis [Weng'10]

Biology [Singh'07]

PageRank: Formulation

- Assumption:
- A webpage is important if it is linked by many other webpages
- Formulation:
- Iteratively solve the following linear system

$$
\mathbf{r}=c \mathbf{A} \mathbf{r}+(1-c) \mathbf{e}
$$

- Mathematically elegant, only topological information is needed
- Many Variants Exist:
- Personalized PageRank
- Random Walk with Restart
- And so on

Why Auditing PageRank?

- Problem: end-users do not understand how the results were derived
- Potential Outcomes:
- Render crucial explainability of ranking algorithms
- Optimize network topology
- Identify vulnerabilities in the network (e.g. preventing adversarial attacks)

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

Prob. Def.: PageRank Auditing Problem

- Given:
- (1) adjacency matrix A;
- (2) PageRank r;
- (3) loss function over PageRank vector $f(\mathbf{r})$;
- (4) user-specific element type (edges vs. nodes vs. subgraph);
- (5) integer budget k.
- Find: a set of kinfluential graph elements
- Intuitive Example:

AURORA Formulation

- Intuition: find a set of influential elements that have largest impact on the loss function over PageRank vector.
- Optimization Problem:

- Choices of Loss Function:
- Square TABLE II: Choices of $f(\cdot)$ functions and their derivatives

Descriptions	Functions	Derivatives				
L_{p} norm	$f(\mathbf{r})=\\|\mathbf{r}\\|_{p}$	$\frac{\partial f}{\partial \mathbf{r}}=\frac{\mathbf{r} \circ\|\mathbf{r}\|^{p-2}}{\\|\mathbf{r}\\|_{p}^{p-1}}$				
Soft maximum	$f(\mathbf{r})=\log \left(\sum_{i=1}^{n} \exp (\mathbf{r}(i))\right)$	$\frac{\partial f}{\partial \mathbf{r}}=\left[\frac{\exp (\mathbf{r}(i))}{\sum_{i=1}^{n} \exp (\mathbf{r}(i)}\right]$				
Energy norm	$f(\mathbf{r})=\mathbf{r}^{\prime} \mathbf{M r}$	$\frac{\partial f}{\partial \mathbf{r}}=\left(\mathbf{M}+\mathbf{M}^{\prime}\right) \mathbf{r}$				
(M in Energy Norm is a Hermitian positive definite matrix.)						

Challenges

- C1: Measure of Influence
- C2: Optimality
- C3: Scalability

Challenges

- C1: Measure of Influence
- Understanding Black-box Machine Learning Models
- Quantify influence by perturbing features or training data.
- Obs: Inconsistent with unsupervised graph ranking settings.
- Influence Maximization
- Measure the size of 'infected' nodes in information propagation process.
- Obs: fundamentally different from finding influential elements in graph ranking settings.
- Question: how to define the influence in the context of graph ranking?

[^0]
Challenges

- C2: Optimality
- Finding a set of influential graph elements is NP due to its combinatorial nature.
- Question: how to find a set of influential graph elements accurately?
- C3: Scalability
- Question: how to scale up the influential elements finding process?

Definition: Graph Element Influence

- Graph Element Influence
- The influence of an edge (i, j) is defined as the derivative of $f(\mathbf{r})$ w.r.t. the edge.

$$
\mathbb{I}(i, j)=\frac{\mathrm{d} f(\mathbf{r})}{\mathrm{d} \mathbf{A}(i, j)}
$$

- The influence of a node i is defined as the aggregation of all in and out edges.

$$
\mathbb{I}(i)=\sum_{j=1, j \neq i}^{n} \mathbb{I}(i, j)+\mathbb{I}(j, i)
$$

- The influence of a subgraph S is defined as the aggregation of all edges in the subgraph.

$$
\mathbb{I}(i)=\sum_{i, j \in S}^{n} \mathbb{I}(i, j)
$$

Calculating Influence

- Method:
- Define $\mathbf{Q}=(\mathbf{I}-c \mathbf{A})^{-1}$, PageRank: $\mathbf{r}=(1-c) \mathbf{Q e}$
- Apply chain rule

$$
\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}(i, j)}=\operatorname{Tr}\left[\left(\frac{\partial f(\mathbf{r})}{\partial \mathbf{r}}\right)^{\prime} \frac{\partial \mathbf{r}}{\partial \mathbf{A}(i, j)}\right]=2 c \mathbf{r}(j) \operatorname{Tr}\left[\mathbf{r}^{\prime} \mathbf{Q}(:, i)\right]
$$

- Matrix Form Solution:

$$
\frac{\mathrm{d} f(\mathbf{r})}{\mathrm{d} \mathbf{A}}=\left\{\begin{array}{cl}
\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}+\left(\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}\right)^{\prime}-\operatorname{diag}\left(\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}\right) & , \text { if } \mathbf{A} \text { is undirected graph } \\
\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}} & , \text { if } \mathbf{A} \text { is directed graph }
\end{array}\right.
$$

where $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}=2 c \mathbf{Q}^{\prime} \mathbf{r} \mathbf{r}^{\prime}$, each element in $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}$ is $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}(i, j)}$

- Limitation: $\mathbf{Q}^{\prime} \mathbf{r r}^{\prime}$ is an $n \times n$ full matrix, need $O\left(n^{2}\right)$ space
- Question: how to scale up to large graphs?

Scale Up

- Solution: exploring low-rank structure
- Note that PageRank $\mathbf{r}=(1-c) \mathbf{Q e}$

$$
\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}=2 c \mathbf{Q}^{\prime} \mathbf{r r}^{\prime}
$$

A personalized PageRank vector Original PageRank vector

- Reduce $O\left(n^{2}\right)$ space to $O(n)$ space

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

AURORA Algorithms

- Goal: select a set of k influential graph elements
- Observation:
$-\frac{\partial f(\mathbf{r})}{\partial \mathrm{A}}$ is a non-negative matrix, so does $\frac{\mathrm{d} f(\mathbf{r})}{\mathrm{dA}}$.
- Enjoys diminishing returns property \rightarrow submodular function
- Greedy Strategy:
- iteratively select the most influential element in each round;
- remove the selected element and re-rank;
- repeat above procedure k rounds.
- Challenges: computationally expensive to calculate $\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}$
- How to speed up? \rightarrow power iterations

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

AURORA Generalizations: Normalized PageRank

- Intuition: normalize PageRank vector to magnitude of 1
- Key Idea: divide each PageRank score with the sum of all PageRank scores
- Formulation:
- Let $S(\mathbf{r})=\sum_{i=1}^{n} \mathbf{r}(i)$, then

$$
\frac{\partial f(\mathbf{r})}{\partial \mathbf{A}}=c \mathbf{Q}^{\prime}\left(-\frac{2 f(\mathbf{r})}{S(\mathbf{r})} \mathbf{1}+\frac{\mathbf{2}}{S(\mathbf{r})} \mathbf{r}\right) \mathbf{r}^{\prime}
$$

- Solution: apply similar strategy as AURORA
- More details in the paper

AURORA Generalizations: NoN

- NoN (Network of Networks) is defined as a triplet
$<\mathbf{G}, \boldsymbol{A}, \theta>$.
- G: main network
- A: domain-specific networks
- θ : mapping function
- Ranking on NoN:

$$
\min J(\mathbf{r})=c \mathbf{r}^{\prime}\left(\mathbf{I}_{n}-\mathbf{A}\right) \mathbf{r}+(1-c)\|\mathbf{r}-\mathbf{e}\|_{F}^{2}+2 a \mathbf{r}^{\prime} \mathbf{Y r}
$$

within-network smoothness query preference cross-network consistency

- equivalent to PageRank with transition matrix $\mathbf{W}=\frac{c}{c+2 a} \mathbf{A}+\frac{2 a}{c+2 a} \mathbf{Y}$
- Solution: Apply similar strategy as AURORA

AURORA Generalizations: Attributed Networks

- Intuition: find influential attributes in attributed networks.
- Key Idea: treat attributes as attribute nodes and form an augmented graph.
- Supporting Node Attributes:
- (1) A: node-to-node adjacency matrix;
(2) \mathbf{W} : attribute-to-node adjacency matrix.
- Form an augmented graph $\mathbf{G}=\left(\begin{array}{cc}\mathbf{A} & \mathbf{W}^{\prime} \\ \mathbf{W} & \mathbf{A}^{\prime}\end{array}\right)$
- Supporting Edge Attributes:

Node attributes: different shapes Edge attributes: straight vs. curved lines

- Let \mathbf{A} be an $n \times n$ adjacency matrix and x be the number of different edge attributes.
- Embed edge attributes into edge-nodes.
- Form an $(n+x) \times(n+x)$ augmented graph.
- Solution: Apply similar strategy as AURORA

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

Datasets

- Over 10+ real-world datasets

Category	Network	Type	Nodes	Edges
SoCIAL	Karate	U	34	78
	Dolphins	U	62	159
	WikiVote	D	7,115	103,689
	Pokec	D	$1,632,803$	$30,622,564$
COLLABORATION	GrQc	U	5,242	14,496
	DBLP	U	42,252	420,640
	NBA	U	3,923	127,034
	cit-DBLP	D	12,591	49,743
	cit-HepTh	D	27,770	352,807
	cit-HepPh	D	34,546	421,578
PHYSICAL	Airport	D	1,128	18,736
OTHERS	Lesmis	U	77	254
	Amazon	D	262,111	$1,234,877$

(In Type, U means undirected graph; D means directed graph.)

Experimental Settings

- Evaluation Metric
- Effectiveness: difference in $f(r)$
- Efficiency: running time
- Baseline Methods

AURORA (Our Methods)	Baseline Methods
\square AURORA-E	\square Brute force
\square AURORA-N	\square Random selection
\square AURORA-S	\square Top-k degree
	\square PageRank
	\square HITS

Effectiveness: Fixed Budget (Higher is Better)

- Observation: AURORA outperforms baseline methods

Effectiveness (Higher is better)

- Observation: AURORA outperforms baseline methods

Auditing by Subgraphs

Efficiency

- Observation: linear complexity w.r.t. k and m

Case Study on Airport Dataset

- Goal: find important airline routes and airports
- Results:

Task PageRank AURORA Edge Auditing ATL-LAS DEN-ATL ATL-DFW LAX-ORD Node Auditing SFO CLT
Busiest Airports: CLT(6th) > SFO (7th) Proximity: existence of LAX and SJC

Case Study on NBA Dataset

- Goal: find a team in collaboration network
- Query: Allen Iverson
- Results:

Task	PageRank	AURORA
Subgraph Auditing (Graph size: 5)	Allen Iverson Larry Hughes Theo Ratliff Joe Smith Drew Gooden	Allen Iverson Larry Hughes Theo Ratliff Joe Smith Tim Thomas

Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions

Conclusions

- Problem:
- PageRank Auditing Problem
- Solution:
- Family of AURORA algorithms

- Near-optimal results
- Scalability
- Results:
- Outperform other baseline methods
- Achieves linear time complexity
- Finds intuitive and meaningful explanations
- More details in the paper

[^0]: [1] Adler, P., Falk, C., Friedler, S. A., Nix, T., Rybeck, G., Scheidegger, C., Smith, B., \& Venkatasubramanian, S. (2018). Auditing blackbox models for indirect influence. Knowledge and Information Systems, 54(1), 95-122.
 [2] Koh, P. W., \& Liang, P. (2017, July). Understanding Black-box Predictions via Influence Functions. In International Conference on Machine Learning (pp. 1885-1894).
 [3] Kempe, D., Kleinberg, J., \& Tardos, É. (2003, August). Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 137-146). ACM.

