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Abstract—Algorithmic fairness is becoming increasingly im-
portant in data mining and machine learning. Among others,
a foundational notation is group fairness. The vast majority of
the existing works on group fairness, with a few exceptions,
primarily focus on debiasing with respect to a single sensitive
attribute, despite the fact that the co-existence of multiple
sensitive attributes (e.g., gender, race, marital status, etc.) in the
real-world is commonplace. As such, methods that can ensure a
fair learning outcome with respect to all sensitive attributes of
concern simultaneously need to be developed. In this paper, we
study the problem of information-theoretic intersectional fairness
(INFOFAIR), where statistical parity, a representative group
fairness measure, is guaranteed among demographic groups
formed by multiple sensitive attributes of interest. We formulate
it as a mutual information minimization problem and propose
a generic end-to-end algorithmic framework to solve it. The
key idea is to leverage a variational representation of mutual
information, which considers the variational distribution between
learning outcomes and sensitive attributes, as well as the density
ratio between the variational and the original distributions.
Our proposed framework is generalizable to many different
settings, including other statistical notions of fairness, and could
handle any type of learning task equipped with a gradient-
based optimizer. Empirical evaluations in the fair classification
task on three real-world datasets demonstrate that our proposed
framework can effectively debias the classification results with
minimal impact to the classification accuracy.

Index Terms—Group fairness, mutual information, intersec-
tional fairness

I. INTRODUCTION

The increasing amount of data and computational power
have empowered machine learning algorithms to play crucial
roles in automated decision-making for a variety of real-world
applications, including credit scoring [1], criminal justice [2]
and healthcare analysis [3]. As the application landscape of
machine learning continues to broaden and deepen, so does
the concern regarding the potential, often unintentional, bias
it could introduce or amplify. For example, recent media
coverage has revealed that a well-trained image generator
could turn a low-resolution picture of a black man into a
high-resolution image of a white man due to the skewed data
distribution that causes the model to disfavor the minority
group,1 and another article highlighted an automated credit
card application system assigning a dramatically higher credit

1https://www.theverge.com/21298762/face-depixelizer-ai-machine-
learning-tool-pulse-stylegan-obama-bias

limit to a man than to his female partner, even though his
partner has a better credit history.2

As such, algorithmic fairness, which aims to mitigate un-
intentional bias caused by automated learning algorithms, has
become increasingly important. To date, researchers have pro-
posed a variety of fairness notions [4], [5]. Among them, one
of the most fundamental notions is group fairness.3 Generally
speaking, to ensure group fairness, the first step is to partition
the entire population into a few demographic groups based on
a pre-defined sensitive attribute (e.g., gender). Then the fair
learning algorithm will enforce parity of a certain statistical
measure among those demographic groups. Group fairness
can be instantiated with many statistical notions of fairness.
Statistical parity [6] enforces the learned classifier to accept
equal proportion of population from the pre-defined majority
group and minority group. Likewise, disparate impact [5]
ensures the acceptance rate for the minority group should
be no less than four-fifth of that for the group with the
highest acceptance rate, which is analogous to the famous
‘four-fifth’ rule in the legal support area [7]. In addition,
equalized odds and equal opportunity [8] are used to enforce
the classification accuracies to be equal across all demographic
groups conditioned on ground-truth outcomes or positively
labeled populations, respectively. The vast majority of the
existing works in group fairness primarily focus on debiasing
with respect to a single sensitive attribute. However, it is quite
common for multiple sensitive attributes (e.g., gender, race,
marital status, etc.) to co-exist in a real-world application.
We ask: would a debiasing algorithm designed to ensure the
group fairness for a particular sensitive attribute (e.g., marital
status) unintentionally amplify the group bias with respect to
another sensitive attribute (e.g., gender)? If so, how can we
ensure a fair learning outcome with respect to all sensitive
attributes of concern simultaneously?

Existing works for answering these questions [5], [6],
[9], [10] have two major limitations. The first limitation is
that some existing works could only debias multiple distinct

2https://www.nytimes.com/2019/11/10/business/Apple-credit-card-
investigation.html

3An orthogonal work in algorithmic fairness is individual fairness. Although
it promises fairness by ‘treating similar individuals similarly’ in principle, it
is often hard to be operationalized in practice due to its strong assumption on
distance metrics and data distributions.
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Fig. 1: An illustrative example of bias in job application
classification when considering multiple sensitive attributes.
Rows indicate gender (e.g., male vs. female) and columns
indicate race (e.g., orange vs. green).4Boxed individuals re-
ceive job offers. If we consider gender or race alone, statistical
parity is enforced due to the equal acceptance rate. However,
when considering gender and race (i.e., forming finer-grained
gender-race groups), the classification result is biased in the
fine-grained gender-race groups. This is because, the accep-
tance rates in two fine-grained groups (i.e., male-green group
and female-orange) are lower than that of the two other fine-
grained groups (i.e., male-orange and female-green).

sensitive attributes [10], which fails to mitigate bias on the
fine-grained groups formed by multiple sensitive attributes.
Figure 1 provides an illustrative example of the difference
between fairness with respect to multiple distinct sensitive
attributes and fairness among fine-grained groups of multiple
sensitive attributes. The second limitation is that the optimiza-
tion problems behind some existing works are often subject to
surrogate constraints of statistical parity [5], [6], [9] instead of
directly optimizing statistical parity itself, resulting in unstable
performance on bias mitigation unless the learned models
could perfectly model the relationship between the training
data and the ground-truth outcome.

In this paper, we tackle these two limitations by studying
the problem of information-theoretic intersectional fairness
(INFOFAIR), which aims to directly enforce statistical parity
on multiple sensitive attributes simultaneously. Though our fo-
cused fairness notion is statistical parity, the proposed method
can be generalized to other statistical fairness notions (e.g.,
equalized odds and equal opportunity) with minor modifi-
cations. The key idea in solving the INFOFAIR problem is
to consider all sensitive attributes of interest as a vectorized
sensitive attribute in order to partition the demographic groups
and then minimize the dependence between learning outcomes
and this vectorized attribute. More specifically, we measure the
dependence using mutual information originated in informa-
tion theory [11]. Building upon it, we formulate the INFOFAIR
problem as an optimization problem regularized on mutual
information minimization.

The main contributions of this paper are as follows.
• Problem Definition. We formally define the problem of

information-theoretic intersectional fairness and formu-
late it as an optimization problem, where the key idea is to
minimize both the task-specific loss function (e.g., cross-

4We use imaginary race groups to avoid potential offenses.

entropy loss in classification) and mutual information
between learning outcomes and the vectorized sensitive
attribute.

• End-to-End Algorithmic Framework. We propose a
novel end-to-end bias mitigation framework, named IN-
FOFAIR, by optimizing a variational representation of mu-
tual information. The proposed framework is extensible
and capable of solving any learning task with a gradient-
based optimizer.

• Empirical Evaluations. We perform empirical evalua-
tions in the fair classification task on three real-world
datasets. The evaluation results demonstrate that our
proposed framework can effectively mitigate bias with
little sacrifice in the classification accuracy.

II. PROBLEM DEFINITION

In this section, we present a table of the main symbols
used in this paper. Then, we briefly review the concepts
of statistical parity and mutual information, as well as their
relationships. Finally, we formally define the problem of
information-theoretic intersectional fairness.

TABLE I: Table of symbols.
Symbols Definitions

D a set
W a matrix
h a vector
h[i] the i-th element in h
Pr(·) the probability of an event happening
p·,· joint distribution of two random variables
p· marginal distribution of a random variable

H(·) entropy
H(·|·) conditional entropy
I(·, ·) mutual information

In this paper, matrices are denoted by bold uppercase letters
(e.g., X), vectors are denoted by bold lowercase letters (e.g.,
y), scalars are denoted by italic lowercase letters (e.g., c)
and sets are denoted by calligraphic letters (e.g., D). We use
superscript T to denote transpose (e.g., hT is the transpose of
h) and superscript C to denote the complement of a set (e.g.,
set DC is the complement of set D). We use a convention
similar to NumPy for vector indexing (e.g., h[i] is the i-th
element in vector h).
A. Preliminaries
Statistical Parity is one of the most intuitive and widely-
used group fairness notions. Given a set of data points X , their
corresponding labels y and a sensitive attribute s, classification
with statistical parity aims to learn a classifier to predict
outcomes that (1) are as accurate as possible with respect to
y and (2) do not favor one group over another with respect to
s. Mathematically, statistical parity is defined as follows.

Definition 1: (Statistical Parity [6]). Suppose we have (1) a
population X , (2) a hypothesis h : X → {0, 1} which assigns
a binary label to individual x drawn from X and (3) a sensitive
attribute which splits the population X into majority group M
and minority group MC (i.e., X = M∪MC). An individual
x is accepted if h(x) = 1 and rejected if h(x) = 0. The
hypothesis h : X → {0, 1} is said to have statistical parity on
the population X as long as

Pr[h(x) = 1|x ∈ M] = Pr[h(x) = 1|x ∈ MC ] (1)



where Pr[·] denotes the probability of an event happening.
Many methods have been proposed to achieve statistical

parity. For example, Zemel et al. [12] learn fair representation
by regularizing the difference in expected positive rate for
majority and minority groups. Zhang et al. [13] propose an
adversarial learning-based framework for fair classification, in
which the output of the predictor is used to predict the sensitive
attribute by the adversary. Kearns et al. [9] propose a learner-
auditor framework to enforce subgroup fairness through ficti-
tious play strategy.
Mutual Information was first introduced in the 1940s [11].
Given two random variables, mutual information measures
the dependence between them by quantifying the amount of
information in bits obtained on one random variable through
observing the other one. Let (x, y) be a pair of random
variables x and y. Suppose their joint distribution is px,y
and the marginal distributions are px and py . The mutual
information between x and y is defined as

I(x; y) = H(x)−H(x|y) =
∫
x

∫
y

px,y log
px,y
pxpy

dxdy

(2)
where H(x) = −

∫
x
px log pxdx is the entropy of x and

H(x|y) = −
∫
x

∫
y
px,y log px|ydxdy is the conditional en-

tropy of x given y. Unlike correlation coefficients (e.g.,
Pearson’s correlation coefficient) which could only capture
the linear dependence between two random variables, mutual
information is more general in capturing both the linear and
nonlinear dependence between two random variables. We have
I(x; y) = 0 if and only if two random variables x and y are
independent to each other.

According to Lemma 1, there is an equivalence between
statistical parity and zero mutual information.

Lemma 1: (Equivalence between statistical parity and zero
mutual information [12], [14]). Statistical parity requires a
sensitive attribute to be statistically independent to the learn-
ing results, which is equivalent to zero mutual information.
Mathematically, given a learning outcome ỹ and the sensitive
attribute s, we have

pỹ|s = pỹ︸ ︷︷ ︸
statistical parity

⇔ pỹ,s = pỹps ⇔ I(ỹ; s) = 0︸ ︷︷ ︸
zero mutual information

(3)

Proof: Omitted for brevity.
B. Information-Theoretic Intersectional Fairness

In order to generalize Lemma 1 from a single sensitive
attribute to a set of sensitive attributes S = {s(1), . . . , s(k)},
we first introduce the concept of vectorized sensitive at-
tribute s given S. We define the vectorized sensitive attribute
s = [s(1), . . . , s(k)] as a multi-dimensional random variable
where each element of s represents the corresponding sensitive
attribute in S (e.g., s[i] = s(i) is the i-th sensitive attribute).
Based on that, we have the following equivalence. For nota-
tional simplicity, we denote I(ỹ; s(1), . . . , s(k)), pỹ,s(1),...,s(k)

and ps(1),...,s(k) with I(ỹ; s), pỹ,s and ps, respectively.
pỹ|s = pỹ ⇔ pỹ,s = pỹps ⇔ I(ỹ; s) = 0 (4)

Based on Eq. (4), we formally define the problem of
information-theoretic intersectional fairness as a mutual infor-
mation minimization problem.

Problem 1: INFOFAIR: Information-Theoretic Intersectional
Fairness

Input: (1) a set of k sensitive attributes S =
{s(1), . . . , s(k)}; (2) a set of n data points D =
{(xi, si, yi)|i = 1, . . . , n} where xi is the feature vector of
the i-th data point, yi is its label and si = [s

(1)
i , . . . , s

(k)
i ]

describes the vectorized sensitive attributes on S of the i-th
data point (with s

(j)
i being the corresponding attribute value of

the j-th sensitive attribute s(j)); and (3) a learning algorithm
represented by l(x; s; y; ỹ; θ), where l is the loss function,
ỹ∗ = argminỹl(x; s; y; ỹ; θ) is the optimal learning outcome
on the input data with θ being model parameters.

Output: a set of revised learning outcomes {ỹ∗} which
minimizes (1) the empirical risk E(x,s,y)∼D[l(x; s; y; ỹ; θ)] and
(2) the expectation of mutual information between the learning
outcomes and the sensitive attributes E(x,s,y)∼D

[
I(ỹ; s)

]
.

Remark: a byproduct of INFOFAIR is that the statistical
parity can also be achieved on any subset of sensitive attributes
included in S, which is summarized in Lemma 2. This could
be particularly useful in that the algorithm administrator does
not need to re-train the model in order to obtain fair learning
results if s/he is only interested in a subset of available
sensitive attributes.

Lemma 2: Consider statistical parity as the fairness notion.
Given a learning outcome ỹ, a set of k sensitive attributes
S = {s(1), . . . , s(k)} and the vectorized sensitive attribute s =
[s(1), . . . , s(k)]. If ỹ is fair with respect to s, then ỹ is fair with
respect to any vectorized sensitive attribute ssub induced from
the subset of sensitive attributes Ssub ⊆ S = {s(1), . . . , s(k)}.

Proof: Omitted for brevity.
III. PROPOSED METHOD

In this section, we present a generic end-to-end algorith-
mic framework, named INFOFAIR, for information-theoretic
intersectional fairness. We first formulate the problem as a
mutual information minimization problem, and then present
a variational representation of mutual information. Based on
that, we present the INFOFAIR framework to solve the opti-
mization problem, followed by discussions on generalizations
and variants of our proposed framework.
A. Objective Function

Given a dataset D = {(xi, si, yi)|i = 1, . . . , n}, the
INFOFAIR problem (Problem 1) can be naturally formulated
as minimizing the following objective function,

J = E(x,s,y)∼D
[
l(x; s; y; ỹ; θ) + αI(ỹ; s)

]
(5)

where l is a task-specific loss function for a learning task, θ is
the model parameter, ỹ is the learning outcome and α > 0 is
the regularization hyperparameter. An example of loss function
l is the negative log likelihood

l(x; s; y; ỹ; θ) = − log ỹ[y] (6)
where y is the class label and ỹ denotes the probabilities of
being classfied into the corresponding class.

To optimize the above objective function, a key challenge
lies in optimizing the mutual information between the learning
outcome and the vectorized sensitive feature I(ỹ; s). Inspired
by the seminal work of Belghazi et al. [15], a natural choice



would be to apply off-the-shelf mutual information estima-
tion methods for high-dimensional data. Examples include
MINE [15], Deep Infomax [16] and CCMI [17], which esti-
mate mutual information by parameterizing neural networks to
maximize tight lower bounds of mutual information. However,
in a mutual information minimization problem like Eq. (5), it is
often counter-intuitive to maximize a lower bound of mutual
information. Though one could still maximize the objective
function of these estimators to estimate the mutual information
and use such estimation to guide the optimization of Eq. (5)
as a minimax game, it is hindered by two hurdles. First,
it requires learning a well-trained estimator to estimate the
mutual information during each epoch of optimizing Eq. (5).
Second, if the estimator is not initialized with proper parameter
settings, mutual information may be poorly estimated, which
could further result in failing to find a good saddle point in
such a minimax game.
B. Variational Representation of Mutual Information

In this paper, we take a different strategy from MINE and
other similar methods by deriving a variational representation
of mutual information I(ỹ; s). Our variational representation
leverages a variational distribution of the vectorized sensitive
feature s given the learning outcome ỹ (Lemma 3).

Lemma 3: Suppose the joint distribution of the learning
outcome ỹ and the vectorized sensitive feature s is pỹ,s and the
marginal distributions of ỹ and s are pỹ and ps, respectively.
Mutual information I(ỹ, s) between ỹ and s is as follows.

I(ỹ; s) = H(s)+E(ỹ,s)∼pỹ,s

[
log qs|ỹ

]
+E(ỹ,s)∼pỹ,s

[
log

pỹ,s
pỹqs|ỹ

]
(7)

where qs|ỹ is the variational distribution of s given ỹ.
Proof: Omitted for brevity.

Next, we minimize the variational representation shown
in Lemma 3, which contains three terms: (1) the
entropy H(s), (2) the expectation of log likelihood
E(ỹ,s)∼pỹ,s

[
log qs|ỹ

]
and (3) the expectation of log density

ratio E(ỹ,s)∼pỹ,s

[
log

pỹ,s

pỹqs|ỹ

]
. For the first term H(s), we

assume it to be a constant term, which can be ignored in
the optimization stage. The rationale behind our assumption
is that, in most (if not all) use cases, the vectorized sen-
sitive feature s relates to the demographic information of
an individual (e.g., gender, race, marital status, etc.), which
should remain unchanged during the learning process. Then
the remaining key challenges lie in (C1) calculating log qs|ỹ
and (C2) estimating log

pỹ,s

pỹqs|ỹ
. The intuition of C1 and C2

is that we strive to find a learning outcome ỹ such that (1)
ỹ fails to predict the vectorized sensitive feature s (refer to
C1), while (2) making it hard to distinguish if the vectorized
sensitive feature s is generated from the variational distribution
or sampled from the original distribution (refer to C2).
C1 – Calculating log qs|ỹ. It can be naturally formulated as
a prediction problem, where the input is the learning outcome
ỹ and the output is the probability of s being predicted. To
solve it, we parameterize a decoder f(ỹ; s;W) (e.g., a neural
network) as a sensitive feature predictor to ‘reconstruct’ s,
where W is the learnable parameters in the decoder.

log qs|ỹ = log f(ỹ; s;W) (8)
For categorical sensitive attribute, log qs|ỹ refers to the

log likelihood of classifying ỹ into label s, which can be
interpreted as the negative of cross-entropy loss of the de-
coder f(ỹ; s;W). Moreover, if s contains multiple categorical
sensitive attributes, solving Eq. (8) requires solving a multi-
label classification problem, which itself is not trivial to solve.
In this case, we further reduce it to a single-label problem
by applying a mapping function map() to map the multi-hot
encoding s into a one-hot encoding ŝ (i.e., ŝ = map(s)).
C2 – Estimating log

pỹ,s

pỹqs|ỹ
. In practice, calculating pỹ,s and

pỹqs|ỹ individually is hard since the underlying distributions
pỹ,s and pỹ are often unknown. Recall that our goal is
to estimate the log of the ratio between these two joint
distributions. Therefore, we estimate it through density ratio
estimation, where the numerator pỹ,s denotes the original
joint distribution of the learning outcome ỹ and ground-truth
vectorized sensitive feature s, and the denominator pỹqs|ỹ
denotes the joint distribution of the learning outcome ỹ and
the vectorized sensitive feature s̃ generated from the learning
outcome using the aforementioned decoder.

We further reduce this density ratio estimation problem to
a class probability estimation problem, which was originally
developed in [18] for solving a different problem (i.e., the
classification problem with the input distribution and the test
distribution differing arbitrarily). The core idea is that, given
a pair of learning outcome and vectorized sensitive feature,
we want to predict whether it is drawn from the original
joint distribution or from the joint distribution inferred by
the decoder. We label each pair of learning outcome and
ground-truth vectorized sensitive feature (ỹ, s) with a positive
label (c = 1) and each pair of learning outcome and gener-
ated vectorized sensitive feature (ỹ, s̃) with a negative label
(c = −1). After that, we rewrite the probability densities as
pỹ,s = Pr[c = 1|ỹ, s] and pỹqs|ỹ = Pr[c = −1|ỹ, s]. Then the
density ratio can be further rewritten as

log
pỹ,s
pỹqs|ỹ

= log
Pr[c = 1|ỹ, s]

Pr[c = −1|ỹ, s]
= logit(Pr[c = 1|ỹ, s])

(9)
Furthermore, if we model Pr[c = 1|ỹ, s] using logistic regres-
sion (i.e., Pr[c = 1|ỹ, s] = logistic(ỹ, s)), Eq. (9) is reduced
to a simple linear function as

log
pỹ,s
pỹqs|ỹ

= logit(logistic(ỹ, s)) = wT
1 ỹ +wT

2 s (10)

where both w1 and w2 are learnable parameters. Putting
everything together, we rewrite Eq. (5) as

J = E(x,y)∼D
[
l(x; s; y; ỹ; θ) + α log qs|ỹ

]
+ αE{(ỹ,s)∼pỹ,s}∪{(ỹ,s)∼pỹqs|ỹ}

[
wT

1 ỹ +wT
2 s

] (11)

where pỹ,s is the joint distribution of the learning outcome
ỹ and ground-truth vectorized sensitive feature s, pỹqs|ỹ is
the joint distribution of the learning outcome ỹ and predicted
vectorized sensitive feature s.
C. INFOFAIR: Overall Framework

Based on the objective function (Eq. (11)), we propose
a generic end-to-end framework to solve the information-
theoretic intersectional fairness problem. A general overview
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Fig. 2: A General overview of our proposed INFOFAIR framework. The dashed line between sensitive feature s and feature
extractor means that sensitive features can be optionally passed into feature extractor as the input.

of the model architecture is shown in Fig. 2. Our proposed
model contains four main modules, including (1) feature
extractor, (2) target predictor, (3) sensitive feature predictor
and (4) a density ratio estimator. In principle, as long as
each module is differentiable, the proposed framework can
be optimized by any gradient-based optimizer.

The general workflow of INFOFAIR is as follows.
1. The non-sensitive features and sensitive features (op-

tional) are passed into a feature extractor to extract the
learning outcomes;

2. The learning outcomes will be fed into a target predictor
to predict the targets for a certain downstream task (i.e.,
l(x; s; y; ỹ; θ) in Eq. (11));

3. The learning outcomes will be passed into the sensitive
feature predictor to ‘reconstruct’ the vectorized sensitive
features (i.e., log qs|ỹ in Eq. (11));

4. Together with the learning outcomes and the ground-truth
vectorized sensitive features, the predicted vectorized
sensitive features will be used to estimate the density
ratio between the original distribution and the variational
distribution (i.e., wT

1 ỹ +wT
2 s in Eq. (11)).

Given a data point with categorical sensitive attribute(s),
the predicted vectorized sensitive feature s is usually denoted
as a one-hot vector. However, learning a one-hot vector
is a difficult problem due to the discrete nature of vector
elements, which makes the computation non-differentiable.
To address this issue, we approximate such one-hot encod-
ing by Gumbel-Softmax [19], which can be calculated as

s[i] =
exp(

[
log(os[i])+gi

]
/τ)∑ns

j=1 exp(
[
log(os[j])+gj

]
/τ)

, where os is the output

of the sensitive feature predictor, ns is the dimension of s,
g1, . . . , gns are i.i.d. points drawn from Gumbel(0, 1) distri-
bution, and τ is the softmax temperature. As τ → ∞, the
Gumbel-Softmax samples are uniformly distributed; while as
τ → 0, the Gumbel-Softmax distribution converges to a one-
hot categorical distribution. In INFOFAIR, we start with a high
temperature and then anneal it during epochs of training.

D. INFOFAIR: Generalizations and Variants
The proposed INFOFAIR is able to be generalized in mul-

tiple aspects. Due to the space limitation, we only give some
brief descriptions, each of which could be a future direction
in applying our proposed framework.

A – INFOFAIR with equal opportunity. Our INFOFAIR
framework is generalizable to enforce equal opportunity [8],
another widely-used group fairness notions. We leave for
future work to explore the potential of INFOFAIR in enforcing
equal opportunity.

Equal opportunity ensures equality across demographic
groups for a preferred label (i.e., the label that benefits an
individual). Mathematically, it is defined as follows.

Definition 2: (Equal Opportunity [8]). Following the settings
of Definition 1, if equal opportunity is enforced, the hypothesis
h : X → {0, 1} satisfies
Pr[h(x) = 1|x ∈ M, y = 1] = Pr[h(x) = 1|x ∈ MC , y = 1]

(12)
where Pr[·] denotes the probability of an event happening.

Analogous to the relationship between mutual information
and statistical parity, ensuring equal opportunity is essentially
a conditional mutual information minimization problem.

pỹ|s,y=1 = pỹ|y=1︸ ︷︷ ︸
equal opportunity

⇔ I(ỹ; s|y = 1) = 0︸ ︷︷ ︸
zero conditional mutual information

(13)

By the definition of conditional mutual information, we have
I(ỹ; s|y = 1) = H(s|y = 1) −H(s|ỹ, y = 1). For H(s|y =
1), we assume it as a constant term by the similar rationale of
statistical parity. Similarly, we can rewrite H(s|ỹ, y = 1) as

H(s|ỹ, y = 1) =E(ỹ,s)∼pỹ,s|y=1

[
− log qs|ỹ,y=1

]
− E(ỹ,s)∼pỹ,s|y=1

[
log

pỹ,s|y=1

pỹ|y=1qs|ỹ,y=1

]
(14)

Then, to compute log qs|ỹ,y=1, we could adopt similar strategy
as computing log qs|ỹ in Section III-B by constructing a
decoder f(ỹ, s,W) to ‘reconstruct’ s for positive training
samples. Similarly, estimating the density ratio can be achieved
by applying Eq. (10) on positive training samples. Thus,
INFOFAIR is able to enforce equal opportunity by minimizing

J = E(x,y)∼D
[
l(x; s; y; ỹ; θ) + α log qs|ỹ

]
+ αE{(ỹ,s)∼pỹ,s|y=1}∪{(ỹ,s)∼pỹ|y=1qs|ỹ,y=1}

[
wT

1 ỹ +wT
2 s

]
(15)

B – Relationship to adversarial debiasing. Adversarial
debiasing framework [13] consists of (1) a predictor that
predicts the class membership probabilities using given data
and (2) an adversary that takes the output of the predictor to
predict the sensitive attribute of given data. The framework is



optimized to minimize the loss function of the predictor while
maximizing the loss function of the adversary. If we merge
feature extractor and target predictor to one single module and
remove the density ratio estimator, INFOFAIR will degenerate
to the adversarial debiasing method.
C – Relationship to Information Bottleneck. If we set the
loss function l in Eq. (5) as the negative mutual informa-
tion −I(ỹ; y), Eq. (5) becomes the information bottleneck
method [20]. Then the goal becomes to learn ỹ that depends
on the vectorized sensitive attribute s minimally and ground
truth y maximally.
D – Fairness for continuous-valued sensitive features.
Most existing works in fair machine learning only consider
categorical sensitive attribute (e.g., gender, race). Our proposed
INFOFAIR framework could be generalized to continuous-
valued features as mutual information supports continuous-
valued random variables. This advantage could empower our
framework to work in even more application scenarios. For ex-
ample, in image classification, we can classify images without
the impact of certain image patches (e.g., patches that relate
to individual’s skin color). However, a major difficulty lies
in modeling the variational distribution of sensitive attribute
given the learning outcomes extracted from feature extractor.
A potential solution could be utilizing a generative model (e.g.,
VAEs [21]) as the sensitive feature predictor.
E – Fairness for non-i.i.d. graph data. For fair graph
mining, given a graph G = (A,X) where A is the adjacency
matrix and X is the node feature matrix, we can use graph
convolutional layer(s) as a feature extractor with the weight
of the last layer to be identity matrix I and no nonlinear
activation in the last graph convolution layer, in order to
extract node representations. The reason for such a specific
architecture in the last graph convolution layer is as follows. In
general, a graph convolutional layer consists of two operations:
feature aggregation Z = faggregate(A;X) = AX and feature
transformation H = ftransform(Z;W) = σ(ZW) where W is
learnable parameters and σ is usually a nonlinear activation.
The last layer in GCN [22] is simply softmax(AXW), which
can be viewed as a general multi-class logistic regression on
the aggregated feature Z = AX (i.e., softmax(ZW)).
F – Fairness beyond classification. Note that INFOFAIR
does not have specific restrictions on the architecture of the
feature extractor, target predictor or sensitive target predictor,
which empowers it to handle many different types of tasks by
selecting the proper architecture for each module. For example,
if an analyst aims to learn fair representations with respect to
gender for recommendation, s/he can set the feature extractor
to be a multi-layer perceptron (MLP) for learning outcome
extraction, the target predictor layer to be an MLP that predicts
a rating and minimizes the mean squared error (MSE) between
the predicted rating and ground-truth rating, and the sensitive
target predictor to be another MLP with softmax to predict the
gender based on extracted embedding.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct experimental evaluations. All
experiments are designed to answer the following questions:

RQ1. How does the fairness impact the learning performance?
RQ2. How effective is INFOFAIR in mitigating bias?
A. Experimental Settings
A – Datasets. We test the proposed method on three
commonly-used datasets in fair machine learning research. The
statistics of these datasets are summarized in Table II.

TABLE II: Statistics of datasets.
Datasets # Samples # Attributes # Classes
COMPAS 6,172 52 2

Adult Income 45,222 14 2
Dutch Census 60,420 11 2

B – Baseline Methods. We compare INFOFAIR with several
baseline methods, including Learning Fair Representations
(LFR) [12], MinDiff [23], Generalized Demographic Parity
(GDP) [24], Adversarial Debiasing (Adversarial) [13], Fair
Classification with Fairness Constraints (FCFC) [6], Gerry-
Fair [9] and Disparate Impact (DI) [5].
C – Metrics. To answer RQ1, we measure the performance of
classification using micro F1 and macro F1 (Micro/Macro F1).
To answer RQ2, we measure to what extent the bias is reduced
by the average statistical imparity (Imparity) and the relative
bias reduction (Reduction) on average statistical imparity. The
average statistical imparity (Imparity) is defined as Imparity =
avg(|Pr(ŷ = c|x ∈ g1)−Pr(ŷ = c|x ∈ g2)|) for any class label
c and any pair of two different demographic groups g1 and g2.
The relative bias reduction measures the relative decrease of
the imparity of the debiased outcomes Imparitydebiased to the
imparity of vanilla outcomes (i.e., outcomes without fairness
consideration) Imparityvanilla. It is computed mathematically as
Reduction = 1− Imparitydebiased

Imparityvanilla
. Note that relative bias reduction

defined above can be negative if the debiased learning outcome
contains more biases than the vanilla learning outcome.

More experimental settings regarding reproducibility are
provided in Appendix.
B. Main Results

We test our proposed framework, as well as baseline
methods, in three different settings: debiasing binary sensitive
attribute (i.e., gender for all three datasets), debiasing non-
binary sensitive attribute (i.e., race for COMPAS and Adult
Income, marital status for Dutch Census) and debiasing mul-
tiple sensitive attributes (i.e., gender & race for COMPAS and
Adult Income, gender & marital status for Dutch Census). For
each dataset and each setting, we train each model on training
set, then select the trained model with best bias mitigation
performance on validation set and report its performance
on the test set. For the vanilla model (without any fairness
consideration), we report the model with the highest micro and
macro F1 scores. This is because the algorithm administrators
are often more concerned with maximizing the utility of
classification algorithms. The results of LFR and MinDiff in
debiasing non-binary sensitive attribute and multiple sensitive
attributes are absent since they only handle binary sensitive
attribute by design.
A – Effectiveness results. The effectiveness results of INFO-
FAIR and baseline methods on COMPAS, Adult Income and
Dutch Census datasets are shown in Table III. We provide



TABLE III: Debiasing results on all datasets. Lower is better for the gray column (Imparity). Higher is better for all others.
Debiasing results on COMPAS dataset

Method gender race gender & race
Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction

Vanilla 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%
LFR 0.554/0.357 0.000 100.0% N/A N/A N/A N/A N/A N/A

MinDiff 0.972/0.972 0.050 0.000% N/A N/A N/A N/A N/A N/A
DI 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%

Adversarial 0.554/0.357 0.000 100.0% 0.554/0.357 0.000 100.0% 0.554/0.357 0.000 100.0%
FCFC 0.446/0.308 0.000 100.0% 0.446/0.308 0.000 100.0% 0.446/0.308 0.000 100.0%

GerryFair 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%
GDP 0.972/0.972 0.050 0.000% 0.972/0.972 0.181 0.000% 0.972/0.972 0.234 0.000%

INFOFAIR 0.924/0.923 0.038 23.15% 0.815/0.803 0.179 1.010% 0.877/0.872 0.231 1.350%
Debiasing results on Adult Income dataset

Method
gender race gender & race

Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction
Vanilla 0.830/0.762 0.066 0.000% 0.830/0.762 0.062 0.000% 0.830/0.762 0.083 0.000%

LFR 0.743/0.426 0.000 100.0% N/A N/A N/A N/A N/A N/A
MinDiff 0.828/0.746 0.058 12.06% N/A N/A N/A N/A N/A N/A

DI 0.823/0.730 0.053 19.85% 0.825/0.743 0.056 10.62% 0.823/0.736 0.081 2.276%
Adversarial 0.743/0.426 0.000 100.0% 0.743/0.426 0.000 100.0% 0.743/0.426 0.000 100.0%

FCFC 0.257/0.204 0.000 100.0% 0.257/0.204 0.000 100.0% 0.257/0.204 0.000 100.0%
GerryFair 0.833/0.752 0.056 15.70% 0.833/0.752 0.067 −7.664% 0.797/0.710 0.215 −158.3%

GDP 0.825/0.744 0.055 16.73% 0.827/0.749 0.059 6.351% 0.824/0.740 0.075 9.246%
INFOFAIR 0.816/0.721 0.047 29.24% 0.810/0.686 0.042 32.11% 0.818/0.714 0.082 1.532%

Debiasing results on Dutch Census dataset

Method
gender marital status gender & marital status

Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction Micro/Macro F1 Imparity Reduction
Vanilla 0.832/0.831 0.119 0.000% 0.832/0.831 0.079 0.000% 0.832/0.831 0.172 0.000%

LFR 0.521/0.342 0.000 100.0% N/A N/A N/A N/A N/A N/A
MinDiff 0.831/0.830 0.107 10.16% N/A N/A N/A N/A N/A N/A

DI 0.825/0.824 0.104 12.43% 0.830/0.830 0.080 −1.156% 0.814/0.811 0.127 26.65%
Adversarial 0.521/0.342 0.000 100.0% 0.521/0.342 0.000 100.0% 0.521/0.342 0.000 100.0%

FCFC 0.479/0.324 0.000 100.0% 0.479/0.324 0.000 100.0% 0.479/0.324 0.000 100.0%
GerryFair 0.826/0.823 0.078 34.29% 0.826/0.823 0.070 11.70% 0.826/0.823 0.125 27.53%

GDP 0.828/0.826 0.097 18.31% 0.827/0.826 0.086 −9.056% 0.827/0.825 0.131 23.80%
INFOFAIR 0.817/0.813 0.068 43.08% 0.815/0.811 0.077 2.017% 0.819/0.817 0.128 25.65%

additional results on visualizing the trade-off between micro
F1 score and average statistical imparity in Appendix. From
the tables, we have the following observations. First, Our
method is the only method that can mitigate bias (i.e., Imparity
and Reduction) effectively and consistently with a small degree
of sacrifice to the vanilla classification performance (i.e., Mi-
cro/Macro F1) for all datasets and all settings. Second, though
LFR, Adversarial Debiasing and FCFC achieves the perfect
bias reduction, their classification performance is severely
reduced by predicting all data samples with the same label
(i.e., negative sample for LFR and Adversarial Debiasing,
positive sample for FCFC). Though, in a few settings, DI,
GerryFair and GDP mitigate more bias than INFOFAIR, they
either amplify the bias or fail to outperform INFOFAIR in the
other settings. All in all, INFOFAIR achieves the best balance
in reducing the bias and maintaining the classification accuracy
in most cases.
B – Trade-off between micro F1 and average statistical
imparity. Figure 3 shows the results of trade-off between mi-
cro F1 (Micro F1) and average statistical imparity (Imparity).
From the figure, we can observe that INFOFAIR achieves the
best trade-off between accuracy and fairness (i.e., being closer
to the bottom right corner in Figure 3) in most cases.

C. Ablation Study

Let T = E
[
l(x; s; y; ỹ; θ)

]
be the empirical loss of target

predictor, S = αE
[
log qs|ỹ

]
be the empirical loss of sensitive

feature predictor and D = αE
[
wT

1 ỹ+wT
2 s

]
be the empirical

loss of density ratio estimator, objective function of INFOFAIR

Adult Income

COMPAS

Dutch Census

Fig. 3: Trade-off between micro F1 score and average sta-
tistical imparity. Best viewed in color. Red star represents
INFOFAIR. The closer to bottom right, the better trade-off
between micro F1 score and average statistical imparity. Bias
is amplified by a method if its corresponding point is above
the dashed line (which denotes the imparity of Vanilla).

(Eq. (11)) can be written as J = T + S + D. To evalu-
ate the effectiveness on optimizing the proposed variational
representation of mutual information, we compare with two
variants of objective function, i.e., T + S and T +D, on the



COMPAS

Adult Income

Dutch Census

Fig. 4: Results of the ablation study on variants of objective
function. Best viewed in color. Higher is better.

same datasets and the same set of sensitive attributes as in
Section IV-B. Experimental protocols and parameter settings
are kept the same among all compared objective functions (i.e.,
T+S+D, T+S and T+D). The results of the ablation study
are shown in Figure 4. From the figure, we observe that our
objective function (i.e., T+S+D) can mitigate more bias than
the other two variants (i.e., T + S and T +D) in most cases.
This implies that our proposed variational representation can
better model the dependence between the learning outcomes
and the vectorized sensitive features.

When debiasing race on COMPAS dataset and debiasing
marital status on Dutch Census dataset, we observe that the
cardinalities of the demographic groups are more imbalanced.
Recall the goal of sensitive feature predictor is to reduce
the accuracy of predicting sensitive feature using the ex-
tracted embedding. When the demographic groups are more
imbalanced, it tends to learn an embedding that contains
information about a wrong demographic group to reduce its
accuracy. Thus, though T + S may achieve lower imparity,
the statistical dependence between the extracted embeddings
and the sensitive feature may not be reduced, meaning that
the extracted embeddings are merely shifted to correlate with
wrong demographic groups. However, with the addition of
density ratio estimator, we ensure that (1) not only the sensitive
feature predictor makes wrong prediction (2) but also the
distribution of sensitive attribute and the extracted embeddings
modeled by S (pỹqs|ỹ) are similar to its corresponding original
distribution (i.e., pỹ,s).

V. RELATED WORK

A – Group fairness aims to ensure statistical-based fairness
notions across the entire populations. It has been exten-
sively studied in many application domains, including credit
scoring [5], recidivism [25], healthcare [12], recommender

systems [26] and natural language processing [27]. Kamishima
et al. [28] estimate mutual information between the learning
outcome and sensitive attribute by marginalizing the output
of a probabilistic discriminative model. Zemel et al. [12] use
a regularized approach to learn fair embeddings for group
fairness and individual fairness. Feldman et al. [5] debias
input data distribution by linear interpolation of original data
distribution and fair data distribution. Zhang et al. [13] propose
an adversarial debiasing framework. Bose et al. [10] learn
fair node representations by adversarial learning. However,
their proposed framework could only debias multiple distinct
sensitive attributes instead of multiple sensitive attributes
simultaneously. Kearns et al. [9] further consider subgroup
fairness from game-theoretic perspective. Different from [9],
INFOFAIR directly optimizes statistical parity through mu-
tual information minimization instead of optimizing the self-
defined surrogate ‘fairness violation’ functions using game-
theoretic method. Zafar et al. [6] ensure statistical parity by
minimizing the covariance between the sensitive attribute of
each data sample and its distance to the decision boundary
of a convex margin-based classifier. Adeli et al. [29] remove
statistical dependence by minimizing Pearson’s correlation
for a convolutional neural network. Nevertheless, [6], [29]
only remove the linear dependence whereas our proposed
INFOFAIR removes both linear and nonlinear dependence
directly. In addition to statistical parity and disparate impact,
Hardt et al. [8] propose another widely-used fairness notion
named equal opportunity. Prost et al. [23] achieve equal false
positive rate through maximum mean discrepancy (MMD)
minimization. However, it can only debias with respect to
binary sensitive attribute by design. Jiang et al. [24] propose
generalized demographic parity for tractable calculation de-
mographic parity with respect to continuous-valued sensitive
attributes. In terms of intersectional fairness, Kim et al. [30]
propose Multiaccuracy Boost to ensure low classification error
for each intersectional demographic group. Foulds et al. [31]
propose ϵ-differential fairness, which ensures pairwise equal
acceptance rate. They further estimate ϵ-differential fairness
and its corresponding uncertainty [32]. Morina et al. [33]
develop the equivalence between minimizing ϵ-differential
fairness and minimizing a linear combination of false positive
rate and false negative rate in a binary classification problem.
Ramos et al. [34] ensure intersectional fairness in reputation-
based ranking systems by minimizing the difference among
the average reputations of a user from different demographic
groups. Different from [34], our proposed INFOFAIR ensures
intersectional fairness from information-theoretic perspective,
and is applicable to various learning tasks as shown in Sec-
tion III-D.
B – Mutual information estimation for high-dimensional
data has been made possible in recent decades by analyzing
variational bounds of mutual information with machine learn-
ing techniques. Regarding variational upper bound of mutual
information, Kingma et al. [21] and Rezende et al. [35] al-
most concurrently propose Variational Auto-Encoders (VAEs)
which optimizes a variational upper bound of mutual informa-



tion conceptually. Variational lower bounds of mutual informa-
tion have been extensively studied recently. Barber et al. [36]
propose a variational lower bound of mutual information and
maximize the mutual information through moment match-
ing. Belghazi et al. [15] propose Mutual Information Neu-
ral Estimation (MINE) which maximizes Donsker-Varadhan
representation of Kullback-Leibler (KL) divergence [37]. In
[15], MINE-f , a variant of MINE, is proposed to maxi-
mize the variational estimation of f -divergence introduced by
Nguyen et al. [38]. The same variational representation of f -
divergence has been applied to other generative models like
f -GAN [39]. Mukherjee et al. [17] propose a classifier-based
neural estimator for conditional mutual information named
CCMI. In addition, van den Oord et al. [40] propose infoNCE
based on noise contrastive estimation (NCE) [41]. Hjelm et
al. [16] propose Deep Infomax (DIM) to maximize the mutual
information between global representation and local regions of
the input, which is further generalized to graphs [42].

VI. CONCLUSION

In this paper, we study information-theoretic intersectional
fairness, where we aim to simultaneously debias the learning
results with respect to multiple sensitive attributes. We for-
mally define the information-theoretic intersectional fairness
problem by measuring the dependence between the learning
results and multiple sensitive attributes as the mutual informa-
tion between learning results and a joint attribute formed by
these sensitive attributes. Based on that, we formulate it as an
optimization problem and further propose a generic end-to-end
framework, which effectively minimizes mutual information
between the learning results and the joint attribute through its
variational representation. We perform fair classification on
three real-world datasets with the consideration of categorical
sensitive attributes. The empirical evaluation results demon-
strate that our proposed framework can effectively debias the
classification results with respect to one or more sensitive
attribute(s) with little sacrifice to the classification accuracy.
Our framework is generalizable to different settings beyond
the scope of fair classification with categorical sensitive at-
tributes in our experimental evaluation. In the future, we
will investigate our framework in other learning tasks (e.g.,
recommendation) and its effectiveness in mitigating bias for
continuous-valued sensitive attributes (e.g., age, income).
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APPENDIX
A. Descriptions of Baseline Methods
Learning Fair Representations (LFR) [12] learns a set of fair
prototype representations. Each data sample is first mapped to
a prototype, which is used to predict fair outcome. We use
the implementation by IBM AIF360 and the same grid search
strategy for hyperparameters in [12].
MinDiff [23] ensures equal false positive rate by minimiz-
ing the maximum mean discrepancy (MMD) between the
two demographic groups with negative samples only. We
implement our own version of MinDiff with the Gaussian
kernel. The hyperparameters for the Gaussian kernel is set
to be consistent with [23]. For fair comparison, we set the
regularization hyperparameter to 0.1, which is the same with
the corresponding setting for INFOFAIR.
Disparate Impact (DI) [5] ensures disparate impact by inter-
polating the original data distribution with an unbiased distri-
bution. For fair comparison, we set the linear interpolation
coefficient, which is referred to as λ in [5], such that the
interpolation ratios of [5] and ours are the same, i.e., 1−λ

λ = 1
α .

Adversarial Debiasing (Adversarial) [13] uses an adversary
to predict the sensitive attribute using the prediction from a
predictor. Both the predictor and the adversary can be flexibly
chosen. Since its official source code is not available, we
implement the model using the same machine configurations
as INFOFAIR. For fair comparison, we switch (1) the predictor
to feature extractor and target predictor in our proposed
framework and (2) the adversary to sensitive feature predictor
in our framework. We also set the same learning rate as our
framework.

Fair Classification with Fairness Constraints (FCFC) [6]
measures the statistical imparity as the covariance between
the sensitive attribute of a data sample and the distance of
the corresponding data sample to the decision boundary of a
linear classifier. We use the official implementation of FCFC
provided by Zafar et al. and adopt their released parameter
settings in our experiments.
GerryFair [9] ensures subgroup fairness for cost-sensitive
classification through fictitious play from game-theoretic per-
spective. Since the relationship between α in INFOFAIR and
parameters of GerryFair is unclear, we use the default param-
eters provided in the officially released source code
Generalized Demographic Parity (GDP) [24] computes the
weighted total variation distance on local average prediction
and global average prediction. For fair comparison, we use the
official implementation, set the same backbone model for fea-
ture extraction and prediction and use the same regularization
hyperparameter (0.1) as INFOFAIR.
B. Experimental Protocol and Model Architectures

The learning task we consider is fair classification with
respect to categorical sensitive attribute(s). For all datasets, we
take both non-sensitive features and sensitive features as input
to the feature extractor. Regarding the model architecture,
for Adult Income and Dutch Census datasets, the feature
extractor is a 1-layer MLP with hidden dimension 32; the
target predictor contains one hidden layer that calculates the
log likelihood of predicting class label using the embeddings
output by the feature extractor; and the sensitive feature
predictor is similar to the target predictor that leverages one
hidden layer to calculate the log likelihood of predicting the
vectorized sensitive feature using the extracted embeddings.
For COMPAS dataset, we set the feature extractor to be a
2-layer MLP with hidden dimension 32 in each layer, while
keeping all other modules to be the same as they are for Adult
Income and Dutch Census datasets.
C. Parameter Settings and Repeatability

For all datasets, we set the regularizatioin parameter α =
0.1. The number of epochs for training is set to 100 with
a patience of 5 for early stopping. Weight decay is set to
0.01. We tune the learning rate as 0.001 for DI and 0.0001
for MinDiff, Adversarial and our method. All learnable model
parameters are optimized with Adam optimizer [43]. The
starting temperature for Gumbel-Softmax is set to 1 and
is divided by 2 every 50 epochs for annealing. To reduce
randomness and enhance reproducibility, we run 5 different
initializations with random seed from 0 to 4.
D. Machine Configurations

All three datasets are publicly available online. All models
(i.e., INFOFAIR and baseline methods) are implemented with
PyTorch 1.9.0 and are trained on a Linux server with 96 Intel
Xeon Gold 6240R CPUs at 2.40 GHz and 4 Nvidia Tesla V100
SXM2 GPUs with 32 GB memory. We will release the source
code upon publication.


