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Network Mining: Applications

* Network mining is ubiquitous.
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Recommender System [Gori et al. 2007]
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Information Retrieval [Weng 2010]

Social Network Analysis [Tang et al. 2010]
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Network Mining: Ranking

* Information Retrieval: which webpages are the most important
in WWW? ACM CIKM 2019: The 28th ACM Int ti | Conf
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Network Mining: Ranking

* Question: WHY does ranking algorithm act sensitive to
malicious links?
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algorithm
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Network Mining: Clustering

* Clustering: who will be grouped into the same community?
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* Question: WHY do and@ belong to the same community?

Network Mining: Clustering




Network Mining: Recommendation

Recommendation: which item best suits a user’s taste?
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Network Mining: Recommendation

* Question: HOW do fake ratings affect recommender system?
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Network Mining: Limitations

* Advantage: good at answer what/which questions.
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* Key Question: how do network mining results relate to underlying structure?
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Problem Definition: Network ™
Derivative Mining (N2N)

* N2N: network to derivative network ~ inputeraphA

. L ] ° L) °
e ':' '..‘oo L = ”A - uV,“F o

* Input: = A
* (1) an adjacency matrix A
* (2) a network mining algorithm L(A,Y, 0) e
* loss function L(-)
 optimal model output Y* = argminyL(A,Y, 8)

ranked webpages Y'*

e additional set of parameters 6
* (3) a scalar function over optimal model output f(Y™)

e OQutput: a derivative network B
* B(i,j) = influence of edge A(i,j) onY*
* B(i,j) = 0if A(i,j) does not exist

*  We focus on the derivatives for the existing edges here, but it naturally applies to non-existing edges.
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Problem Definition

Examples of Network Mining Algorithm

Mining Task Loss Function L() Mining Result Y* Parameters Scalar function f ()
HITS min||A — av’||7 hubs u none fyy=214,-1
uv authorities v 1 2
min Tr (U'LU
Spectr‘al u ( ) eigenvectors U # clusters k f(Y*) = Tr(U'LU)
Clustering s.t. UU=1
Matrix . |lprojo(A —UV")||2 user matrix U latent dimension k . 2
, n \ - . fFQr?) = lUV'|2
Completion | 'uv +2,||UJ|2 + A,||V]|2 item matrix V A Ay

* The choice of scalar function f () is flexible.
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N2N: Formulation

* Intuition: influential = high impact if perturbed

* Definition of Edge Influence: the derivative of f (Y™) w.r.t. the
edge.

df ()

dA(i, j)

B(i,j) =

e Mathematical Formulation:

( * * *
o df (Y < afa(z ) + (afa(X ))’ — diag (afa(z )>, if undirected
S i if di d
\ A | IT directe

s.t. Y* =argminyL(A,Y,0)

key component to calculate
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Potential Benefits

 Derivative is a powerful tool.

* Application Scenarios:
— Explainable network mining —
— Adversarial attacks on network mining
— Active learning — derivative analysis
— Optimal network learning
— Counterfactual learning
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Challenges

* C1: Efficiency

~ Network mining Y* = argminyL(A,Y, 6)} potentially

df(y”
S complicated

dA(i,j)
— Question: how to construct the derivative network
efficiently?

e C2: Scalability

— Iterating the influence calculation over all edges.

— Influence calculation B(i, j) =

~
possibly super-linear time and space complexities

— Question: how to scale up the derivative network
generation ?




Roadmap

* Motivations

* N2N Instantiations
— Task #1: HITS
— Task #2: Spectral Clustering
— Task #3: Matrix Completion

* Experimental Results

* Conclusions
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N2N: Algorithmic Framework

* Input: the adjacency matrix A, a network mining algorithm
L(A,Y,0), ascalar function f(-).

* Qutput: the derivative network B.
3-step strategy:

1. Run network mining algorithm Y* = argminyL(A,Y, 8)

af (Y")
0A

2. Calculate partial derivative

3. Construct derivative network

B = df (¥’ _ ] O0A *( 0A ) dlag( 5A ) if undirected
° 6f(Y*)’ if directed
\ J0A
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Task #1: HITS ﬁ

Goal: importance of nodes = hub scores u + authority scores v
u = Av
v=Au

Optimization Problem:

min||A — uv’||%
uv

Solution: rank-1 SVD

— u = first left singular vector of A = principal eigenvector of AA’
— v = first right singular vector of A = principal eigenvector of A’'A

* Question: how does the network topology influence the quality
of ranking by HITS?
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N2N for HITS E

* Choice of f(-) Function: f(Y*) =1, — 1,
— Sensitive to eigengap [Ng et al. 2001].

* Constructing the Derivative Network:
— Chain Rule:

D gy [(La2)) PR g, (1) AY () — 20, (D) (3 A) ()

OA(,j) dAA’
— Matrix Form Solution:
af(Y*) _ ! ! _ ! !
= 2(ug ujA —uy uyA) = 2(u61vy — U6, Vy)
JdA
N
rank-2 SVD

* Avoid matrix multiplication (0(n3) in time).
e Construct while optimizing HITS.

* Time and Space Complexities:
— O(m +n)intimeand O(m + n) in space.

[1] Ng, A. Y., Zheng, A. X., & Jordan, M. I. Stable algorithms for link analysis. SIGIR 2001.
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Task #2: Spectral Clustering

maximize intra-connectivity

e Goal: find k clusters such that ~|:

minimize inter-connectivity

e Optimization Problem: min Tr (U'LU)

s.t. UU=1I
where L is Laplacian matrix of A, U is a matrix with k orthonormal column vectors.

e Solution: rank-k eigen-decomposition.
— U = eigenvectors with k smallest eigenvalues

* Question: what would happen if an edge is perturbed between
two nodes?
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N2N for Spectral Clustering

* Choice of f(-) Function: f(Y*) = Tr(U'LU)

— Consistent with the objective.

* Constructing the Derivative Network:
— Chain Rule:

of () _
0A(i.j)

r|(22k) aj(';,j)] = U’ )[U(:) —UG,)]

— Matrix Form Solution:

af(Y?) : , , laxn: nXn full matrix
J0A = diag(UU )1, — UU’ with 1 as entries.

* Limitation: 0(n3) in time complexity and 0(n?) in space.

* Question: how to scale up the computation to large networks?
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N2N for Spectral Clustering

* Scale-Up Computation: 202 = diag(UU")1,,,, — UU’

— Solution: explore the low-rank structure.
ujuy
diag(UU')1,,x,, = diag(UU")1,,x111xn = [
Up U,

u
] [ug ...uy,]

] 1,4, and UU’ =
Up

* u; = i™ row of matrix U
_ g;g}; = u;(u; — u;) > 0(k) time for one edge and O(km) in total.
of (") (v - v )
0A — R
af (Y™) J _ / u; u;

0A(i,))

* Time and Space Complexities:
— O(k(m + n) + k?n) in time and O(kn + m) in space.
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Task #3: Matrix Completion

Goal: learn two low-rank matrices for all users and items

Optimization Problem:
min  ||projo(A — UV')|IZ + 4, |IUlIZ + 2, VI

uyv
/ Q = {observations}, 1,;, A,, for regularization

not jointly convex for Uand V
Solution: Alternating Least Square (ALS)
— Fix U, solve for V

— Fix 'V, solve for U

 Question: how sensitive are the recommendation results due
to users’ ratings?




oo

N2N for Matrix Completion

* Choice of f(+) Function: f(Y*) = ||UV'||%
— Measure the overall sensitivity of the recommender system.
* Constructing the Derivative Network:
— Chain Rule: X = UV’
n{ np
af(Y”) Z Z af (Y") 0X(l,t)
It

dA(i, ) dX(l,t) 0A(i,))
o ou(l, : av(t,:
_ ZZZX(l,t)[aAEi ];V’(t,:) +U’(l,:)aA((§ j;]
1t ‘ '

S~ =

involve optimization procedure

— Observation: optimization procedure is involved.
— Solution: consider KKT conditions [Li et al. 2016]

[1] Li, B., Wang, Y., Singh, A., & Vorobeychik Y.. Data Poisoning Attacks on Factorization-Based Collaborative Filtering. NIPS 2016.
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N2N for Matrix Completion

e Solution: consider KKT conditions.

ou(l,: . . o
B 6A((i,j)) = V(j, )[Aud + Xkeq, V(k,:)'V(k,:)], onlyifi =1
av(t,: . ’ -
- 6Aéi,j)) = U(, ) [Apl + Xgeq, Uk, :)'U(k,:)], onlyif j =t
— 0 otherwise
© Element-wise Solution: Ci = Aul+ Zueq, V(k)'V(:), Dy = T+ Jieq, Uk UK )
Y*
= 2U@, - )V'VCIV(, 1) + 2V(, - HU'UD; UG, 0 )
oAG,)) 220 G,:)" +2V(,: )U'UD UG -)

many matrix multiplications rating-specific terms

— Observation:
* need to calculate C; and D; for each rating made by a user.

* many matrix multiplications involved.
— Question: how to scale up to large networks?
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N2N for Matrix Completion

* Element-wise Solution:
af (Y™)
= 2U(,: )V'VC:V(,:) + 2V(,:)U'UD; tU(, )’

e Scale-up computation:

— U, V: mining results.

- U'U, V'V: shared for all users and items.

- C;, D;: calculated during ALS.

— Precompute U'U, V'V, C; and D; during ALS.

* Time and Space Complexities:
— 0(k3(nq + ny) + k*m) amortized time complexity
— 0(k?(ny + n,) + m) space complexity.
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* Motivations

* N2N Instantiations
— Task #1: HITS
— Task #2: Spectral Clustering
— Task #3: Matrix Completion

* Experimental Results

* Conclusions
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Experimental Settings

* Questions:

— Effectiveness in attacking network mining tasks
— Scalability

* Datasets: 10+ various types of real-world datasets.
— Types: directed, undirected, bipartite

 Baseline Methods:

Method Parameter

Top Degree

Top EigenCentrality

HITS
CONTAIN!! r = 80
AURORAP! ¢ = 1/225(A)

[1] Chen, C., Peng R., Ying L., & Tong, H. Network Connectivity Optimization: Fundamental Limits and Effective Algorithms. KDD 2018.
E [2] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
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Effectiveness

* Observation: outperform baseline methods across three
different instantiations and over different budget size.
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Scalability

* Observation: scale linearly w.r.t. network size.

Ranking by HITS

Spectral Clustering

Matrix Completion
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* Motivations

* N2N Instantiations
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* Experimental Results

 Conclusions
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Conclusions .

Problem: Network Derivative Mining P

°
P 0.. o..: ‘l

Solution: el S

e .%a an

— An algorithmic framework (N2N) to construct the derivative network.
* Three different instantiations: HITS, spectral clustering, matrix completion
— Ability to scale up to large networks.

Results:

— Effective in adversarial attack on network mining tasks.
— Linear time and space complexity.
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More details in the paper.
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— Detailed experimental settings.
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— Proofs and analysis for each instantiation.
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