
N2N: Network Derivative Mining

Jian Kang Hanghang Tong



Network Mining: Applications

• Network mining is ubiquitous.

Recommender System [Gori et al. 2007]Information Retrieval [Weng 2010]

Social Network Analysis [Tang et al. 2010]

[1] Weng, J., Lim, E.-P., Jiang, J. & He, Q.. Twitterrank: Finding Topic-Sensitive Influential Twitterers. WSDM 2010.
[2] Gori, M., & Pucci, A. ItemRank: A Random-walk Based Scoring Algorithm for Recommendation Engines. IJCAI 2007.
[3] Tang, L., & Liu, H. Graph Mining Applications to Social Network Analysis. Managing and Mining Graph Data 2010. 2
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Network Mining: Ranking

• Information Retrieval: which webpages are the most important 
in WWW? 

ranking 
algorithm
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Network Mining: Ranking

• Question: WHY does ranking algorithm act sensitive to 
malicious links? 
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ranking 
algorithm



Network Mining: Clustering

• Clustering: who will be grouped into the same community?
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Network Mining: Clustering

• Question: WHY do        and        belong to the same community?
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• Recommendation: which item best suits a user’s taste?

recommender
system
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Network Mining: Recommendation



• Question: HOW do fake ratings affect recommender system?

recommender
system
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Network Mining: Recommendation



Network Mining: Limitations
• Advantage: good at answer what/which questions.

• Disadvantage: cannot answer why/how questions. 

• Key Question: how do network mining results relate to underlying structure?
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Problem Definition: Network 
Derivative Mining (N2N)
• N2N: network to derivative network
• Input:

• (1) an adjacency matrix 𝐀
• (2) a network mining algorithm 𝐿(𝐀, 𝑌, 𝜃)

• loss function 𝐿 (
• optimal model output 𝑌∗ = argmin1𝐿(𝐀, 𝑌, 𝜃)
• additional set of parameters 𝜃

• (3) a scalar function over optimal model output 𝑓(𝑌∗)

• Output: a derivative network 𝐁
• 𝐁 𝑖, 𝑗 = influence of edge 𝐀(𝑖, 𝑗) on	𝑌∗

• 𝐁 𝑖, 𝑗 = 0 if 𝐀 𝑖, 𝑗 does not exist

* We focus on the derivatives for the existing edges here, but it naturally applies to non-existing edges.

input graph 𝐀

ranked	webpages	𝑌∗

𝐿 = 𝐀 − 𝐮𝐯C D
E
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Problem Definition

Mining Task Loss Function 𝐿() Mining Result 𝑌∗ Parameters Scalar function 𝑓()

HITS min
𝐮,𝐯

𝐀 − 𝐮𝐯C D
E hubs 𝐮

authorities 𝐯
none 𝑓 𝑌∗ = 𝜆G − 𝜆E

Spectral 
Clustering

min
𝐔
Tr 𝐔C𝐋𝐔

s. t. 𝐔C𝐔 = 𝐈
eigenvectors 𝐔 # clusters 𝑘 𝑓 𝑌∗ = Tr(𝐔C𝐋𝐔)

Matrix 
Completion min

𝐔,𝐕

projQ 𝐀 − 𝐔𝐕C D
E

+𝜆S 𝐔 D
E + 𝜆T 𝐕 D

E
user matrix 𝐔
item matrix 𝐕

latent dimension 𝑘
𝜆S, 𝜆T

𝑓 𝑌∗ = 𝐔𝐕C D
E

Examples of Network Mining Algorithm

* The choice of scalar function 𝑓() is flexible. 
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N2N: Formulation

• Intuition: influential → high impact if perturbed
• Definition of Edge Influence: the derivative of 𝑓(𝑌∗) w.r.t. the 

edge.
𝐁 𝑖, 𝑗 =

d𝑓(𝑌∗)
d𝐀(𝑖, 𝑗)

• Mathematical Formulation:

s. t. 𝑌∗ = argmin1𝐿(𝐀, 𝑌, 𝜃)

𝐁 =
d𝑓(𝑌∗)
d𝐀 =

𝜕𝑓(𝑌∗)
𝜕𝐀 + (

𝜕𝑓 𝑌∗

𝜕𝐀 )′ − diag
𝜕𝑓 𝑌∗

𝜕𝐀 ,

𝜕𝑓(𝑌∗)
𝜕𝐀

,

if undirected

if directed

key component to calculate 
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Potential Benefits

• Derivative is a powerful tool.
• Application Scenarios:

– Explainable network mining
– Adversarial attacks on network mining
– Active learning
– Optimal network learning
– Counterfactual learning

derivative analysis
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Challenges

• C1: Efficiency
– Network mining 𝑌∗ = argmin1𝐿(𝐀, 𝑌, 𝜃)
– Influence calculation 𝐁 𝑖, 𝑗 = WX(1∗)

W𝐀(Y,Z)
– Question: how to construct the derivative network 

efficiently?

• C2: Scalability
– Iterating the influence calculation over all edges.

– Question: how to scale up the derivative network 
generation ?

potentially 
complicated

possibly super-linear time and space complexities
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Roadmap

• Motivations
• N2N Instantiations

– Task #1: HITS
– Task #2: Spectral Clustering
– Task #3: Matrix Completion

• Experimental Results
• Conclusions
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N2N: Algorithmic Framework

• Input: the adjacency matrix 𝐀, a network mining algorithm 
𝐿(𝐀, 𝑌, 𝜃), a scalar function 𝑓(().
• Output: the derivative network 𝐁.
3-step strategy:
1. Run network mining algorithm 𝑌∗ = argmin1𝐿(𝐀, 𝑌, 𝜃)

2. Calculate partial derivative [X(1
∗)

[𝐀
3. Construct derivative network

𝐁 =
d𝑓(𝑌∗)
d𝐀 =

𝜕𝑓(𝑌∗)
𝜕𝐀

+ (
𝜕𝑓 𝑌∗

𝜕𝐀
)′ − diag

𝜕𝑓 𝑌∗

𝜕𝐀
,

𝜕𝑓(𝑌∗)
𝜕𝐀

,

if undirected

if directed
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Task #1: HITS

• Goal: importance of nodes = hub scores 𝐮 + authority scores 𝐯

• Optimization Problem:

• Solution: rank-1 SVD
– 𝐮 = first left singular vector of 𝐀 = principal eigenvector of 𝐀𝐀′
– 𝐯 = first right singular vector of 𝐀 = principal eigenvector of 𝐀′𝐀

• Question: how does the network topology influence the quality 
of ranking by HITS?

𝐮 = 𝐀𝐯
𝐯 = 𝐀′𝐮

min
𝐮,𝐯

𝐀 − 𝐮𝐯C D
E
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N2N for HITS
• Choice of 𝒇(() Function: 𝑓 𝑌∗ = 𝜆G − 𝜆E

– Sensitive to eigengap [Ng et al. 2001].

• Constructing the Derivative Network:
– Chain Rule: 

[X(1∗)
[𝐀(Y,Z)

= Tr [ ^_`^a
[𝐀𝐀b

C [𝐀𝐀b

[𝐀 Y,Z
= 2𝐮𝟏 𝑖 (𝐮𝟏C 𝐀) 𝑗 − 2𝐮𝟐 𝑖 (𝐮𝟐C 𝐀) 𝑗

– Matrix Form Solution: 
𝜕𝑓(𝑌∗)
𝜕𝐀 = 2 𝐮𝟏 𝐮𝟏C 𝐀 − 𝐮𝟐 𝐮𝟐C 𝐀 = 2(𝐮𝟏𝛿G𝐯𝟏C − 𝐮𝟐𝛿E𝐯𝟐C )

• Avoid matrix multiplication (O(𝑛i) in time).
• Construct while optimizing HITS.

• Time and Space Complexities:
– O(𝑚 + 𝑛) in time and O(𝑚 + 𝑛) in space.

[1] Ng, A. Y., Zheng, A. X., & Jordan, M. I. Stable algorithms for link analysis. SIGIR 2001.

rank-2 SVD
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Task #2: Spectral Clustering

• Goal: find 𝑘 clusters such that 

• Optimization Problem:

• Solution: rank-k eigen-decomposition.
– 𝐔 = eigenvectors with 𝑘 smallest eigenvalues

• Question: what would happen if an edge is perturbed between 
two nodes?

min
𝐔

Tr 𝐔C𝐋𝐔
s. t. 𝐔C𝐔 = 𝐈

where 𝐋 is Laplacian matrix of 𝐀, 𝐔 is a matrix with 𝑘 orthonormal column vectors.

maximize intra-connectivity 

minimize inter-connectivity 
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N2N for Spectral Clustering

• Choice of 𝒇(() Function: 𝑓 𝑌∗ = Tr(𝐔C𝐋𝐔)
– Consistent with the objective.

• Constructing the Derivative Network:
– Chain Rule:

[X(1∗)
[𝐀(Y,Z)

= Tr [ ∑lm_
n ^l
[𝐋

C
[𝐋

[𝐀 Y,Z
= 𝐔C 𝑖, : [𝐔(𝑖, : ) − 𝐔 𝑗, : ]

– Matrix Form Solution: 
𝜕𝑓(𝑌∗)
𝜕𝐀 = diag 𝐔𝐔C 𝟏r×r − 𝐔𝐔C

• Limitation: O(𝑛i) in time complexity and O(𝑛E) in space.
• Question: how to scale up the computation to large networks?

𝟏r×r: 𝑛×𝑛 full matrix 
with 1 as entries.
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• Scale-Up Computation: [X(1∗)
[𝐀

= diag 𝐔𝐔C 𝟏r×r − 𝐔𝐔C

– Solution: explore the low-rank structure.

diag 𝐔𝐔C 𝟏r×r = diag 𝐔𝐔C 𝟏r×G𝟏G×r =
𝐮GC 𝐮G
…

𝐮rC 𝐮r
𝟏G×r and 𝐔𝐔C =

𝐮GC
…
𝐮rC

[𝐮G …𝐮r]

– [X(1∗)
[𝐀(Y,Z) = 𝐮YC(𝐮Y − 𝐮Z) → O(𝑘) time for one edge and O(𝑘𝑚) in total. 

• Time and Space Complexities:
– O(𝑘 𝑚 + 𝑛 + 𝑘E𝑛) in time and O(𝑘𝑛 + 𝑚) in space.

𝐮YC = 𝑖vw row of matrix 𝐔

-( )
=
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N2N for Spectral Clustering

𝜕𝑓(𝑌∗)
𝜕𝐀(𝑖, 𝑗)

𝜕𝑓(𝑌∗)
𝜕𝐀

𝐔 𝐔′ 𝐔′

𝐮Z𝐮YC
𝐮Y



Task #3: Matrix Completion

• Goal: learn two low-rank matrices for all users and items
• Optimization Problem:

• Solution: Alternating Least Square (ALS)
– Fix 𝐔, solve for 𝐕
– Fix 𝐕, solve for 𝐔

• Question: how sensitive are the recommendation results due 
to users’ ratings?

min
𝐔,𝐕

projQ 𝐀 − 𝐔𝐕C D
E + 𝜆S 𝐔 D

E + 𝜆T 𝐕 D
E

Ω = {observations}, 𝜆S, 𝜆S for regularization

not jointly convex for 𝐔 and 𝐕
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N2N for Matrix Completion
• Choice of 𝒇(() Function: 𝑓 𝑌∗ = 𝐔𝐕C D

E

– Measure the overall sensitivity of the recommender system.

• Constructing the Derivative Network:
– Chain Rule: 𝐗 = 𝐔𝐕′.

𝜕𝑓(𝑌∗)
𝜕𝐀(𝑖, 𝑗)

=z
{

r_

z
|

ra 𝜕𝑓(𝑌∗)
𝜕𝐗(𝑙, 𝑡)

𝜕𝐗(𝑙, 𝑡)
𝜕𝐀(𝑖, 𝑗)

– Observation: optimization procedure is involved.
– Solution: consider KKT conditions [Li et al. 2016]

= 2z
{

r_

z
|

ra

𝐗 𝑙, 𝑡 [
𝜕𝐔 𝑙, :
𝜕𝐀 𝑖, 𝑗 𝐕

C(𝑡, : ) + 𝐔C 𝑙, :
𝜕𝐕 𝑡, :
𝜕𝐀 𝑖, 𝑗 ]

involve optimization procedure

[1] Li, B., Wang, Y., Singh, A., & Vorobeychik Y.. Data Poisoning Attacks on Factorization-Based Collaborative Filtering. NIPS 2016.
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N2N for Matrix Completion
• Solution: consider KKT conditions.

– [𝐔({,:)
[𝐀(Y,Z)

= 𝐕 𝑗, : [𝜆S𝐈 + ∑�∈Q� 𝐕 𝑘, : C𝐕 𝑘, : ], only if 𝑖 = 𝑙

– [𝐕(|,:)
[𝐀(Y,Z)

= 𝐔 𝑖, : [𝜆T𝐈 + ∑�∈Q� 𝐔 𝑘, : C𝐔 𝑘, : ], only if 𝑗 = 𝑡
– 0 otherwise

• Element-wise Solution: 
𝜕𝑓(𝑌∗)
𝜕𝐀(𝑖, 𝑗) = 2𝐔 i, : 𝐕C𝐕𝐂Y`G𝐕 𝑗, : C + 2𝐕 𝑗, : 𝐔C𝐔𝐃Z`G𝐔 𝑖, : C

– Observation: 
• need to calculate 𝐂Y and 𝐃Z for each rating made by a user.
• many matrix multiplications involved.

– Question: how to scale up to large networks?

𝐂Y = 𝜆S𝐈 + ∑�∈Ql 𝐕 𝑘, : C𝐕 𝑘, : , 𝐃� = 𝜆T𝐈 + ∑�∈Q� 𝐔 𝑘, : C𝐔 𝑘, :

rating-specific terms

24
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N2N for Matrix Completion

• Element-wise Solution:
𝜕𝑓(𝑌∗)
𝜕𝐀(𝑖, 𝑗)

= 2𝐔 i, : 𝐕C𝐕𝐂Y`G𝐕 𝑗, : C + 2𝐕 𝑗, : 𝐔C𝐔𝐃Z`G𝐔 𝑖, : C

• Scale-up computation:
– 𝐔, 𝐕: mining results.
– 𝐔′𝐔, 𝐕C𝐕: shared for all users and items.
– 𝐂Y, 𝐃Z: calculated during ALS.
– Precompute 𝐔′𝐔, 𝐕C𝐕, 𝐂Y and 𝐃Z during ALS.

• Time and Space Complexities:
– O(𝑘i 𝑛G + 𝑛E + 𝑘E𝑚) amortized time complexity
– O(𝑘E(𝑛G + 𝑛E) + 𝑚) space complexity.
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Roadmap

• Motivations
• N2N Instantiations

– Task #1: HITS
– Task #2: Spectral Clustering
– Task #3: Matrix Completion

• Experimental Results
• Conclusions
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Experimental Settings

• Questions:
– Effectiveness in attacking network mining tasks
– Scalability

• Datasets: 10+ various types of real-world datasets.
– Types: directed, undirected, bipartite

• Baseline Methods:

[1] Chen, C., Peng R., Ying L., & Tong, H. Network Connectivity Optimization: Fundamental Limits and Effective Algorithms. KDD 2018.
[2] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
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Method Parameter
Top Degree -

Top EigenCentrality -

HITS -

CONTAIN[1] 𝑟 = 80

AURORA[2] 𝑐 = 1/2𝜆���(𝐀)



Effectiveness

• Observation: outperform baseline methods across three 
different instantiations and over different budget size.  

Ranking by 
HITS

Spectral 
Clustering

Matrix 
Completion

our method

Ranking by HITS
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Scalability

• Observation: scale linearly w.r.t. network size.

Ranking by HITS Spectral Clustering Matrix Completion
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Roadmap

• Motivations
• N2N Instantiations

– Task #1: HITS
– Task #2: Spectral Clustering
– Task #3: Matrix Completion

• Experimental Results
• Conclusions
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Conclusions

• Problem: Network Derivative Mining

• Solution:
– An algorithmic framework (N2N) to construct the derivative network.

• Three different instantiations: HITS, spectral clustering, matrix completion
– Ability to scale up to large networks.

• Results:
– Effective in adversarial attack on network mining tasks.
– Linear time and space complexity. 

• More details in the paper.
– Detailed experimental settings.
– Additional experimental results.
– Proofs and analysis for each instantiation.

linear complexity
N2N
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