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Graph Mining: Applications
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Graph Mining: How To
• Graph Mining Pipeline

• Example: job application classification

• Question: are the mining results fair or biased?
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Algorithmic Fairness in Machine Learning 

• Goal: minimize unintentional bias caused by machine 
learning algorithms
• Existing Measures

– Group fairness
• Disparate impact [1]
• Statistical parity [2]
• Equal odds [3]

– Counterfactual fairness [4]
– Individual fairness [5]

• Limitation: IID assumption in traditional machine learning
– Might be violated by the non-IID nature of graph data 
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Group Fairness: Statistical Parity
• Definition: candidates in protected and unprotected groups have equal probability of being 

assigned to a predicted class 𝑐
Pr! 𝑦 = 𝑐 = Pr" 𝑦 = 𝑐

– Pr! 𝑦 = 𝑐 : probability of being assigned to 𝑐 for protected group; Pr" 𝑦 = 𝑐 is for unprotected 
group

• Illustrative Example: job application classification

• Advantages: 
– Intuitive and well-known
– No impact of sensitive attributes

• Disadvantage: fairness can still be ensured when
– Choose qualified candidates in one group
– Choose candidates randomly in another group
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Individual Fairness
• Problem of Group Fairness: different forms of bias in different settings

– Question: which fairness notion should we apply?
• Principle: similar individuals should receive similar algorithmic outcomes [1]

– Rooted in definition of fairness [2]: lack of favoritism from one side or another
• Definition: given two distance metrics 𝑑& and 𝑑', a mapping 𝑀 satisfies 

individual fairness if for every 𝑥, 𝑦 in a collection of data 𝒟
𝑑& 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝑑' 𝑥, 𝑦

• Illustrative Example:

• Advantage: finer granularity than group fairness
• Disadvantage: hard to find proper distance metrics
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Algorithmic Fairness in Machine Learning 

• Goal: minimize unintentional discrimination caused by 
machine learning algorithms
• Existing Measures

– Group fairness
• Disparate impact [1]
• Statistical parity [2]
• Equal odds [3]

– Counterfactual fairness [4]
– Individual fairness [5]

• Limitation: IID assumption in traditional machine learning
– Might be violated by the non-IID nature of graph data 
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Algorithmic Fairness in Graph Mining

• Fair Spectral Clustering [1]
– Fairness notion: disparate impact

• Fair Graph Embedding
– Fairwalk [2], compositional fairness constraints [3]

• Fairness notion: statistical parity
– MONET [4]

• Fairness notion: orthogonality of metadata and graph embedding

• Fair Recommendation
– Information neural recommendation [5]

• Fairness notion: statistical parity
– Fairness for collaborative filtering [6]

• Fairness notion: four metrics that measure the differences in estimation error 
between ground-truth and predictions across protected and unprotected 
groups

• Observation: all of them focus on group-based fairness!
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Compositional Fairness Constraints for 
Graph Embeddings [1]
• Goal: learn graph embeddings that is fair w.r.t. a combination of different 

sensitive attributes

• Fairness definition: mutual information between sensitive attributes and 
embedding is 0

– Imply statistical parity

• Method: adversarial training
– Key idea: train filters for each sensitive attribute so that embeddings fail to predict 

this attribute
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Algorithmic Fairness in Graph Mining

• Fair Spectral Clustering [1]
– Fairness notion: disparate impact

• Fair Graph Embedding
– Fairwalk [2], compositional fairness constraints [3]

• Fairness notion: statistical parity
– MONET [4]

• Fairness notion: orthogonality of metadata and graph embedding

• Fair Recommendation
– Information neural recommendation [5]

• Fairness notion: statistical parity
– Fairness for collaborative filtering [6]

• Fairness notion: four metrics that measure the differences in estimation error 
between ground-truth and predictions across protected and unprotected 
groups

• Observation: all of them focus on group-based fairness!
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InFoRM: Individual Fairness on Graph Mining

• Research Questions
RQ1. Measures: how to quantitatively measure individual bias?
RQ2. Algorithms: how to enforce individual fairness?
RQ3. Cost: what is the cost of individual fairness?
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Graph Mining Algorithms

• Graph Mining: An Optimization Perspective

– Input:
• Input graph 𝐀
• Model parameters 𝜃

– Output: mining results 𝐘
• Examples: ranking vectors, class probabilities, embeddings
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minimize loss function 
𝑙(𝐀, 𝐘, 𝜃)



Mining Task Loss Function 𝐿() Mining Result 𝑌∗ Parameters

PageRank min
𝐫
𝑐𝐫% 𝐈 − 𝐀 𝐫 + (1 − 𝑐) 𝐫 − 𝐞 &

' PageRank vector 𝐫 damping factor 𝑐
teleportation vector 𝐞

Spectral 
Clustering

min
𝐔
Tr 𝐔%𝐋𝐔

s. t. 𝐔%𝐔 = 𝐈
eigenvectors 𝐔 # clusters 𝑘

LINE (1st) min
𝐗

<
*+,

-

<
.+,

-

𝐀 𝑖, 𝑗 log𝑔 −𝐗 𝑗, : 𝐗 𝑖, : %

+𝑏𝔼.!~0"[log 𝑔 −𝐗 𝑗%, : 𝐗 𝑖, : % ]

embedding matrix 𝐗 embedding dimension 𝑑
# negative samples 𝑏

Examples of Classic Graph Mining Algorithm
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Classic Graph Mining Algorithms



Roadmap

• Motivations
• InFoRM Measures
• InFoRM Algorithms

– Debiasing the Input Graph
– Debiasing the Mining Model
– Debiasing the Mining Results

• InFoRM Cost
• Experimental Results
• Conclusions
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Problem Definition: InFoRM Measures

• Questions
– How to determine if the mining 

results are fair?
– How to quantitatively measure 

the overall bias?
• Input

– Node-node similarity matrix 𝐒
• Non-negative, symmetric

– Graph mining algorithm 𝑙(𝐀, 𝐘, 𝜃)
• Loss function 𝑙 '
• Additional set of parameters 𝜃

– Fairness tolerance parameter 𝜖
• Output

– Binary decision on whether the 
mining results are fair

– Individual bias measure 
Bias(𝐘, 𝐒)

15



Measuring Individual Bias: Formulation

• Principle: similar nodes → similar mining results
• Mathematical Formulation

𝐘 𝑖, : − 𝐘 𝑗, : !
" ≤

𝜖
𝐒 𝑖, 𝑗

∀𝑖, 𝑗 = 1,… , 𝑛

– Intuition: if 𝐒 𝑖, 𝑗 is high, (
𝐒 *,,

is small → push 𝐘 𝑖, : and 𝐘 𝑗, : to be more similar

– Observation: inequality should hold for every pairs of nodes 𝑖 and 𝑗
• Problem: too restrictive to be fulfilled

• Relaxed Criteria: ∑!"#$ ∑%"#$ 𝐘 𝑖, : − 𝐘 𝑗, : &
'𝐒 𝑖, 𝑗 = 2Tr(𝐘(𝐋𝐒𝐘) ≤ 𝑚𝜖 = 𝛿

a

16



Measuring Individual Bias: Solution

• InFoRM (Individual Fairness on Graph Mining)
– Given (1) a graph mining results 𝐘, (2) a symmetric similarity 

matrix 𝐒 and (3) a constant fairness tolerance 𝛿
– 𝐘 is individually fair w.r.t. 𝐒 if it satisfies

Tr 𝐘4𝐋𝐒𝐘 ≤
𝛿
2

– Overall individual bias is Bias 𝐘, 𝐒 = Tr 𝐘4𝐋𝐒𝐘
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Lipschitz Property of Individual Fairness

• Connection to Lipschitz Property
– 𝑫𝟏, 𝑫𝟐 -Lipschitz property [1]: a function 𝑓 is 𝐷7, 𝐷8 -

Lipschitz if it satisfies
𝐷7 𝑓 𝑖 , 𝑓 𝑗 ≤ 𝐿𝐷8 𝑖, 𝑗 , ∀(𝑥, 𝑦)

• 𝐿 is Lipschitz constant
– InFoRM naturally satisfies 𝐷7, 𝐷8 -Lipschitz property as 

long as
• 𝑓 𝑖 = 𝐘[𝑖, : ]
• 𝐷# 𝑓 𝑖 , 𝑓 𝑗 = 𝐘 𝑖, : − 𝐘[𝑗, : ] "

", 𝐷" 𝑖, 𝑗 = #
𝐒 %,'

– Lipschitz constant of InFoRM is 𝜖
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Problem Definition: InFoRM Algorithms

• Question: how to mitigate the bias 
of the mining results?
• Input

– Node-node similarity matrix 𝐒
– Graph mining algorithm 𝑙(𝐀, 𝐘, 𝜃)
– Individual bias measure Bias(𝐘, 𝐒)

• Defined in the previous problem (InFoRM 
Measures)

• Output: a revised mining results 𝐘∗
that minimizes

– Loss function 𝑙(𝐀, 𝐘, 𝜃)
– Individual bias measure Bias(𝐘, 𝐒)

20



Mitigating Individual Bias: How To

• Graph Mining Pipeline

• Observation: Bias can be introduced/amplified in each 
component

– Solution: bias can be mitigated in each part
• Algorithmic Frameworks

– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results

21

output

input graph 𝐀 mining model w/ parameter 𝜃 mining results 𝐘

mutually complementary

minimize 
𝑙(𝐀, 𝐘, 𝜃)

input



Debiasing the Input Graph

• Goal: bias mitigation via a pre-processing strategy
• Intuition: learn a new topology of graph "𝐀 such that

– >𝐀 is as similar to the original graph 𝐀 as possible 
– Bias of mining results on >𝐀 is minimized

• Optimization Problem
min
𝐘

𝐽 = "𝐀 − 𝐀 :
;
+ 𝛼Tr 𝐘<𝐋𝐒𝐘

• Challenge: bi-level optimization
– Solution: exploration of KKT conditions [1, 2]
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s. t. Y = argmin𝐘 𝑙("𝐀, 𝐘, 𝜃)
bias measure

consistency in graph topology

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
[2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI 2015.



Debiasing the Input Graph

• Considering the KKT conditions,
min
𝐘

𝐽 = "𝐀 − 𝐀
:
; + 𝛼Tr 𝐘<𝐋𝐒𝐘

• Proposed Method
(1) Fix >𝐀 (>𝐀 = 𝐀 at initialization), find 𝐘 using current >𝐀
(2) Fix 𝐘, update >𝐀 by gradient descent
(3) Iterate between (1) and (2)

• Problem: how to calculate gradient w.r.t. "𝐀?
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s. t. 𝜕𝐘𝑙 "𝐀, 𝐘, 𝜃 = 0



Debiasing the Input Graph

• Calculating Gradient
𝜕𝐽
𝜕>𝐀

= 2 >𝐀 − 𝐀 + 𝛼 Tr 2D𝐘𝐋𝐒
𝜕 D𝐘

𝜕>𝐀[𝑖, 𝑗]

d𝐽
d>𝐀

=

𝜕𝐽
𝜕>𝐀

+ (
𝜕𝐽
𝜕>𝐀
)′ − diag

𝜕𝐽
𝜕>𝐀

, if undirected

𝜕𝐽
𝜕>𝐀

, if directed

– !𝐘 satisfies 𝜕𝐘𝑙 !𝐀, 𝐘, 𝜃 = 0
– 𝐇 = Tr 2!𝐘𝐋𝐒

)*𝐘
))𝐀[%,'] is a matrix with 𝐇 𝑖, 𝑗 = Tr 2!𝐘𝐋𝐒

)*𝐘
) M𝐀[%,']

• Question: how to efficiently calculate 𝐇?
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key component to calculate 



Instantiation #1: PageRank
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• Goal: efficiently calculate 𝐇 for PageRank
• Mining Results 𝐘: 𝐫 = 1 − 𝑐 𝐐𝐞
• Partial Derivatives 𝐇: 𝐇 = 2𝑐𝐐4𝐋𝐒𝐫𝐫′
• Remarks: 𝐐 = 𝐈 − 𝑐𝐀 97

• Time Complexity
– Straightforward: 𝑂(𝑛-)
– Ours: 𝑂(𝑚# +𝑚" + 𝑛)

• 𝑚𝐀: number of edges in 𝐀
• 𝑚𝐒: number of edges in 𝐒
• 𝑛: number of nodes

×

=

2𝑐𝐐(𝐋𝐒𝐫 𝐫′

𝐇



Instantiation #2: Spectral Clustering
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• Goal: efficiently calculate 𝐇 for spectral clustering

• Mining Results 𝐘: 𝐔 = eigenvectors with 𝑘 smallest eigenvalues

• Partial Derivatives 𝐇: 𝐇 = 2∑%.#/ diag 𝐌%𝐋𝐒𝐮%𝐮%′ 𝟏0×2 −𝐌%𝐋𝐒𝐮%𝐮%′
• Remarks: 𝜆! , 𝐮! = 𝑖-th smallest eigenpair, 𝐌! = 𝜆!𝐈 − 𝐋𝐀 +

• Time Complexity
– Straightforward: 𝑂 𝑘' 𝑚 + 𝑛 + 𝑘,𝑛 + 𝑘𝑛,

– Ours: 𝑂 𝑘' 𝑚 + 𝑛 + 𝑘,𝑛

×

=

𝐌!𝐋𝐒𝐮! 𝐮!′

𝐌!𝐋𝐒𝐮!𝐮!′

vectorize diag 𝐌*𝐋𝐒𝐮*𝐮*′
and stack it 𝑛 times

low-rank



Instantiation #3: LINE (1st)
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• Goal: efficiently calculate 𝐇 for LINE (1st)

• Mining Results 𝐘: 𝐘[𝑖, : ]𝐘 𝑗, : N = log O(
P𝐀 Q,R SP𝐀[R,Q])

T!T"
#/%ST!

#/%T"
− log 𝑏

– 𝑑* = outdegree of node 𝑖, 𝑇 = ∑*./0 𝑑*
1/3 and 𝑏 = number of negative samples

• Partial Derivatives 𝐇: 𝐇 = 2𝑓 B𝐀 + B𝐀′ ∘ 𝐋𝐒 − 2diag 𝐁𝐋𝐒 𝟏V×X
• Remarks

– 𝑓() calculates Hadamard inverse, ∘ calculates Hadamard product
– 𝐁 = 1

3
𝑓 𝐝4/3 𝐝"//3 5 + 𝐝𝟏0×7 + 𝑓 𝐝1/3 𝐝//3 5 + 𝐝𝟏0×7 with 𝐝8 𝑖 = 𝑑*8

• Time Complexity
– Straightforward: 𝑂(𝑛1)
– Ours: 𝑂(𝑚/ +𝑚9 + 𝑛)

• 𝑚&: number of edges in 𝐀
• 𝑚': number of edges in 𝐒
• 𝑛: number of nodes

vectorize diag 𝐁𝐋𝐒 and 
stack it 𝑛 times

element-wise in-place calculation

stack 𝐝 𝑛 times



Debiasing the Mining Model
• Goal: bias mitigation during model optimization
• Intuition: optimizing a regularized objective such that 

– Task-specific loss function is minimized
– Bias of mining results as regularization penalty is minimized

• Optimization Problem
min
𝐘

𝐽 = 𝑙(𝐀, 𝐘, 𝜃) + 𝛼Tr 𝐘4𝐋𝐒𝐘
• Solution

– General: solve by (stochastic) gradient descent )6
)𝐘
= )7(𝐀,𝐘,9)

)𝐘
+ 2𝛼𝐋𝐒𝐘

– Task-specific: solve by specific algorithm designed for the graph mining 
problem

• Advantage
– Linear time complexity incurred in computing the gradient

28

bias measure

task-specific loss function



Debiasing the Mining Model: 
Instantiations
• PageRank

– Objective Function: min
𝐫
𝑐𝐫5 𝐈 − 𝐀 𝐫 + 1 − 𝑐 𝐫 − 𝐞 ;

9 + 𝛼𝐫5𝐋𝐒𝐫

– Solution: 𝐫∗ = 𝑐 𝐀 − =
>
𝐋𝐒 𝐫∗ + (1 − 𝑐)𝐞

• PageRank on new transition matrix 𝐀 − (
)
𝐋𝐒

• If 𝐋𝐒 = 𝐈 − 𝐒, then 𝐫∗ = )
&,(

𝐀 + (
&,(

𝐒 𝐫∗ + &-)
&,(

𝐞

• Spectral Clustering
– Objective Function: min

𝐔
Tr 𝐔5𝐋𝐀𝐔 + 𝛼Tr 𝐔5𝐋𝐒𝐔 = Tr(𝐔5𝐋𝐀!𝛂𝐒𝐔)

– Solution: 𝐔∗ = eigenvectors of 𝐋𝐀!𝛂𝐒 with 𝑘 smallest eigenvalues
• spectral clustering on an augmented graph 𝐀 + 𝛂𝐒

• LINE (1st)
– Objective Function: max

𝐱2,𝐱3
log 𝑔(𝐱,𝐱*5) + 𝑏𝔼,4∈C5 log 𝑔 −𝐱,4𝐱*5 − 𝛼 𝐱* − 𝐱, ;

9
𝐒[𝑖, 𝑗]

∀𝑖, 𝑗 = 1,… , 𝑛
– Solution: stochastic gradient descent 
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Debiasing the Mining Results
• Goal: bias mitigation via a post-processing strategy
• Intuition: no access to either the input graph or the graph 

mining model
• Optimization Problem

min
𝐘

𝐽 = 𝐘 − X𝐘 G
8 + 𝛼Tr 𝐘4𝐋𝐒𝐘

– P𝐘 is the vanilla mining results
• Solution: (𝐈 + 𝛼𝐒)𝐘∗ = X𝐘

– convex loss function as long as 𝛼 ≥ 0 → global optima by )6
)𝐘
= 0

– solve by conjugate gradient (or other linear system solvers)
• Advantages

– No knowledge needed on the input graph
– Model-agnostic

30

bias measure, convex

consistency of mining results, convex
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Problem Definition: InFoRM Cost

• Question: how to quantitatively characterize the cost 
of individual fairness?  
• Input

– Vanilla mining results X𝐘
– Fair mining results 𝐘∗

• Learned by the previous problem (InFoRM Algorithms)

• Output: an upper bound of <𝐘 − 𝐘∗ :
• Debiasing Methods

– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results

32

depend on specific graph topology/mining model

main focus of this paper



Cost of Debiasing the Mining Results

• Given
– A graph with 𝑛 nodes and adjacency matrix 𝐀
– A node-node similarity matrix 𝐒
– Vanilla mining results P𝐘
– Debiased mining results 𝐘∗ = 𝐈 + 𝛼𝐒 D#P𝐘

• If 𝐒 − 𝐀 G = 𝑏, we have
X𝐘 − 𝐘∗ G ≤ 2𝛼 𝑛 𝑏 + 𝑟𝑎𝑛𝑘 𝐀 𝜎IJK 𝐀 X𝐘 G

• Observation: the cost of debiasing the mining results depends on
– The number of nodes 𝑛 (i.e. size of the input graph)
– The difference 𝑏 between 𝐀 and 𝐒
– The rank of 𝐀
– The largest singular value of 𝐀
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could be small due to low-rank structures in real-world graphs 

could be small if 𝐀 is normalized



Cost of Debiasing the Mining Model:
Case Study on PageRank
• Given

– A graph with 𝑛 nodes and symmetrically normalized adjacency matrix 𝐀
– A symmetrically normalized node-node similarity matrix 𝐒
– Vanilla PageRank vector 𝐫̅
– Debiased PageRank vector 𝐫∗ = 𝐈 + 𝛼𝐒 D#P𝐘

• If 𝐒 − 𝐀 G = 𝑏, we have

𝐫̅ − 𝐫∗ G ≤
2𝛼𝑛
1 − 𝑐

𝑏 + 𝑟𝑎𝑛𝑘 𝐀 𝜎IJK 𝐀

• Observation: the cost of debiasing PageRank depends on
– The number of nodes 𝑛 (i.e. size of the input graph)
– The difference 𝑏 between 𝐀 and 𝐒
– The rank of 𝐀
– The largest singular value of 𝐀
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could be small due to low-rank structures in real-world graphs 

upper bounded by 1
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– Debiasing the Mining Model
– Debiasing the Mining Results

• InFoRM Cost
• Experimental Results
• Conclusions
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Experimental Settings
• Questions:

RQ1. What is the impact of individual fairness in graph mining performance?
RQ2. How effective are the debiasing methods?
RQ3. How efficient are the debiasing methods?

• Datasets: 5 publicly available real-world datasets

• Baseline Methods: vanilla graph mining algorithm
• Similarity Matrix: Jaccard index, cosine similarity
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Name Nodes Edges

AstroPh 18,772 198,110

CondMat 23,133 93,497

Facebook 22,470 171,002

Twitter 7,126 35,324

PPI 3,890 76,584



Experimental Settings

• Metrics
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Metric Definition

RQ1

Diff =
𝐘∗ − 3𝐘 "
3𝐘 "

difference between fair and vanilla graph mining 
results

PageRank

𝐾𝐿(
𝐘∗

𝐘∗ #
||

3𝐘
3𝐘 #

) KL divergence

𝑃𝑟𝑒𝑐@50 precision

𝑁𝐷𝐶𝐺@50 normalized discounted cumulative gain

spectral clustering 𝑁𝑀𝐼(𝒞𝐘∗ , 𝒞𝐘) normalized mutual information

LINE
𝑅𝑂𝐶 − 𝐴𝑈𝐶(𝐘∗ , 3𝐘) area under ROC curve

𝐹1(𝐘∗ , 3𝐘) F1 score

RQ2 𝑅𝑒𝑑𝑢𝑐𝑒 = 1 −
Tr (𝐘∗)′ 𝐋𝐒𝐘∗

Tr 3𝐘′𝐋𝐒 3𝐘
degree of reduce in individual bias

RQ3 Running time in seconds running time



Experimental Results
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• Obs.: effective in mitigating bias while preserving the performance of the 
vanilla algorithm with relatively small changes to the original mining results

– Similar observations for spectral clustering and LINE (1st)
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Conclusions
• Problem: InFoRM (individual fairness on graph mining)

– fundamental questions: measures, algorithms, cost
• Solutions: 

– Measures: Bias 𝐘, 𝐒 = Tr(𝐘N𝐒𝐘)
– Algorithms: debiasing (1) the input graph, (2) the mining model and (3) the 

mining results
– Cost: the upper bound of L𝐘 − 𝐘∗ _

• Upper bound on debiasing the mining results
• Case study on debiasing PageRank algorithm

• Results: effective in mitigating individual bias in the graph mining 
results while maintaining the performance of vanilla algorithm

• More details in the paper
– proofs and analysis
– detailed experimental settings
– additional experimental results
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