
JuryGCN: Quantifying Jackknife Uncertainty on
Graph Convolutional Networks

Qinghai Zhou* Hanghang TongJian Kang*

*: equal contribution

Applications of Graph Neural Networks

2

[1] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. In arXiv 2016.
[2] Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. In NeurIPS 2018.
[3] Zhang, S., Tong, H., Xia, Y., Xiong, L., & Xu, J. (2020, August). Nettrans: Neural cross-network transformation. In KDD 2020.
[4] Errica, F., Podda, M., Bacciu, D., & Micheli, A. (2019). A fair comparison of graph neural networks for graph classification. In arXiv 2019.

Node classification [1] Link prediction [2]

Network alignment [3] Graph classification [4]

- 2 -

Uncertainty in Model Prediction
❑Examples

Regression

certainuncertain

Classification

❑Quantifying the uncertainty is important in high-risk applications
• E.g., medical

[1] Peterson, J. C., Battleday, R. M., Griffiths, T. L., & Russakovsky, O. (2019). Human uncertainty makes classification more robust. In ICCV 2019.
[2] Xiao, Y., & Wang, W. Y. (2019, July). Quantifying uncertainties in natural language processing tasks. In AAAI 2019. - 3 -

Training points

Uncertainty in Graph Learning

❑Examples

❑Questions:
Q1: How uncertain is a GCN in its own predictions?
➔Uncertainty quantification (UQ)

Q2: How to improve GCN predictions by leveraging uncertainty?
➔ Application of UQ

[1] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

- 4 -

Predictive probabilitiesEmbedding space

1

3
4

2

5

8

6

7

GCN

1
3

4
2

5

86

7

5

2

6 (0.3, 0.7)

(0.45, 0.55)

(0.9, 0.1)uncertain

Existing Solutions: Bayesian-based

❑Motivation: address over-smoothing/fitting

❑Key idea:
❑adaptively drop edges
❑Monte Carlo estimation for posterior uncertainty [1].

❑Limitations: not explicitly quantify the uncertainty on model
prediction (ad-hoc)

[1] Hasanzadeh, A. et al. Bayesian graph neural networks with adaptive connection sampling. In ICML 2020.
[2] Zhao, X., Chen, F., Hu, S., & Cho, J. H. (2020). Uncertainty aware semi-supervised learning on graph data. In NeurIPS 2020. - 5 -

❑ Motivation: estimate multi-source uncertainty for GNNs

❑ Key idea: a graph-based Dirichlet distribution to reduce errors in
quantifying uncertainties [2].

❑ Limitations: changing the training procedure, e.g., additional parameters (e.g.,

Dirichlet distribution) or architectures (e.g., teacher network)

Existing Solutions:
Deterministic Quantification-based

[1] Hasanzadeh, A. et al. Bayesian graph neural networks with adaptive connection sampling. In ICML 2020.
[2] Zhao, X., Chen, F., Hu, S., & Cho, J. H. (2020). Uncertainty aware semi-supervised learning on graph data. In NeurIPS 2020. - 6 -

Roadmap

▪ Background & Motivation

▪ JuryGCN Formulation

▪ JuryGCN Algorithms

▪ JuryGCN Applications

▪ Experimental Results

▪ Conclusion

- 7 -

Problem Definition
❑ Given:

(1) an undirected graph 𝐺 = 𝑉,𝐀, 𝐗 ;
(2) an L-layer GCN with parameter Θ;
(3) a task-specific objective 𝑅 𝐺, 𝑌, Θ (𝑌: ground-truth)

❑Find:
An uncertainty score UΘ(𝑢) for any node 𝑢 in graph 𝐺 w.r.t.
parameters Θ and objective 𝑅(𝐺, 𝑌, Θ).

- 8 -

1

3
4

2

5

8

6

7

JuryGCN

: 0.1

: 0.84

2

6

Uncertainty
score

: 0.1
labeled

Preliminaries: Jackknife+ Resampling

❑Key idea: leaving out an observation ➔ evaluating prediction error (LOO)
❑Given: training data: 𝐷 = {(𝑥𝑖 , 𝑦𝑖)|𝑖 = 1,… , 𝑛}; a test point (𝑥∗, 𝑦∗); a

trained model 𝑓𝜃(); target coverage 𝛼;
❑Confidence interval: [𝐶− 𝑥∗ , 𝐶+ (𝑥∗)]

• 𝐶+ 𝑥∗ = 𝑄1−𝛼(𝑃
+), 𝐶− 𝑥∗ = 𝑄𝛼 𝑃−

• 𝑃+ = {𝑓𝜃−𝑖 𝑥
∗ + 𝑦𝑖 − 𝑓𝜃−𝑖 𝑥𝑖 𝑖 = 1,… , 𝑛

𝑃− = {𝑓𝜃−𝑖 𝑥
∗ − 𝑦𝑖 − 𝑓𝜃−𝑖 𝑥𝑖 𝑖 = 1,… , 𝑛

Larger interval ➔ less confident

[1] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." The Annals of Statistics 49.1 (2021): 486-507.

- 9 -

Error residual (generalization)LOO prediction

❑Regression task: training set, (𝑥1, 𝑦1 , … , (𝑥5, 𝑦5)}, a test point,
(𝑥∗, 𝑦∗) where y∗ = 10, coverage, 𝛼 = 0.2

Leave-one-out,
re-train 𝑓()

Repeat
5 times

…

𝑥1

𝑥2

𝑥5

Train
𝑓𝜃 …

𝑥1

𝑥2

𝑥5
Testing

𝑓𝜃 𝑥∗ = 9.8

{𝑓𝜃−1 , … , 𝑓𝜃−5}

Testing

𝑓𝜃−𝑖 𝑥
∗

= {9.9, 9.7, 9.6, 10.1, 10.2}

𝑃+ = 𝑓𝜃−𝑖 𝑥
∗ + 𝑦𝑖 − 𝑓𝜃−𝑖 𝑥𝑖 𝑖

𝑃− = {𝑓𝜃−𝑖 𝑥
∗ − 𝑦𝑖 − 𝑓𝜃−𝑖 𝑥𝑖 |𝑖}

𝑃+ = {9.9, 10.1, 10.2, 9.9, 10}
𝑃− = {9.7, 9.5, 9.4, 9.7, 9.6}

Applying quantile:
𝑄1−𝛼(𝑃

+), 𝑄𝛼(𝑃
−)

𝐶+ 𝑥∗ = 10.1, 𝐶− 𝑥∗ = 9.4
Confidence interval width = 0.7

Jackknife+ Resampling: A Numerical Example

[1] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." The Annals of Statistics 49.1 (2021): 486-507.

- 10 -

Challenges

❑C1: How to formally define the Jackknife uncertainty for GNNs?
• Non-IID graph data

❑C2: How to efficiently compute the node uncertainty?
• Avoid re-training

w.l.o.g, considering a node-level tasks (e.g., node classification)

Θ∗ = argminΘ 𝑅 𝐺, 𝑌train, Θ = argminΘ
1

|𝑉train|
෍

𝑣

𝑟(𝑣, 𝑦𝑣, Θ)

Training setTraining labels Node-specific loss (cross-entropy)

𝑟 𝑣, 𝑦𝑣 , Θ = −෍

𝑖=1

𝑐

𝑦𝑣 𝑖 log(𝐺𝐶𝑁 𝑣, Θ 𝑖)

- 11 -

Jackknife Uncertainty: Definition

❑Confidence interval: UΘ 𝑢 = 𝐶Θ
+ 𝑢 − 𝐶Θ

−(𝑢)

❑Compute 𝐶+, 𝐶−

❑Why Jackknife+: stable coverage

𝐶Θ∗
− 𝑢 = 𝑄𝛼({ GCN 𝑢, Θ𝜖,𝑖

∗

2
− 𝑒𝑟𝑟𝑖|∀𝑖 ∈ 𝑉_train})

𝐶Θ∗
+ 𝑢 = 𝑄1−𝛼({ GCN 𝑢, Θ𝜖,𝑖

∗

2
+ 𝑒𝑟𝑟𝑖|∀𝑖 ∈ 𝑉_train})

Error residual:

𝑒𝑟𝑟𝑖 = 𝑦𝑖 − 𝐺𝐶𝑁 𝑖, Θ𝜖,𝑖
∗

2

Upweighting the loss of node 𝑖:

Θ𝜖,i
∗ = argminΘ𝜖𝑟(𝑖, 𝑦𝑖 , Θ)

1

|𝑉train|
෍

𝑣

𝑟(𝑣, 𝑦𝑣 , Θ)Question: How to obtain
Θ𝜖,i
∗ without re-training?

- 12 -

[1] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." The Annals of Statistics 49.1 (2021): 486-507.

Roadmap

▪ Background & Motivation

▪ JuryGCN Formulation

▪ JuryGCN Algorithms

▪ JuryGCN Applications

▪ Experimental Results

▪ Conclusion

- 13 -

Jackknife Uncertainty: Efficient Computation

❑Key idea: efficiently estimate Θ𝜖,i
∗ with influence function [1]

❑Taylor expansion over parameters

❑The influence function can be further computed as [2],

By setting 𝜖 = −
1

𝑉train
, the leave-one-out parameters, Θ𝜖,i

∗ (Eq. (1))

can be computed efficiently.

[1] Pang Wei Koh and Percy Liang. 2017. Understanding Black-Box Predictions via Influence Functions. In ICML 2017.
[2] Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression. New York: Chapman and Hall.

Θ𝜖,i
∗ ≈ Θ∗ + 𝜖𝐈Θ∗(𝑖) (1) where 𝐈Θ∗ 𝑖 =

𝑑Θ𝜖,i
∗

𝑑𝜖
|𝜖→0

𝐈Θ∗ 𝑖 = 𝐇𝚯∗
−1∇Θ𝑟 𝑖, 𝑦𝑖 , Θ

∗ (2) Hessian matrix w.r.t. model parameters

𝐇Θ∗ =
1

𝑉train
∇Θ
2𝑅(𝐺, 𝑌train, Θ

∗)

- 14 -

1

3
4

2
5

8

6
7

Adjusting the weights by 𝜖

❑Proposition: First-order derivative of GCN [1] w.r.t. the parameters
in the l-th layer, i.e., 𝐖 𝑙

 ∇𝐖 𝑙 r i, yi, Θ

• Key idea: apply chain rule on layer parameters.

[1] Kang, J. et al. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. In WWW 2022.
[2] Alaa, A. et al. Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions. In ICML 2020. - 15 -

Jackknife Uncertainty: Efficient Computation (Cont.)

𝐈Θ∗ 𝑖 = 𝐇𝚯∗
−1∇Θ𝑟 𝑖, 𝑦𝑖 , Θ

∗

∇𝐖 𝑙 r i, yi, Θ = ෡𝐀𝐄𝑙−1
𝑇
(
𝜕r i, yi, Θ

𝜕𝐄 𝑙
⊙𝜎′ ෡𝐀𝐄 𝑙−1 𝐖 𝑙)

Hidden representations Normalized graph Laplacian

𝐄 𝑙 = 𝜎(෡𝐀𝐄 𝑙−1 𝐖 𝑙)

❑Theorem: Computing the Hessian tensor of GCN

(the i-th and l-th layer) → S𝑙,𝑖 =
𝜕2𝑅

𝜕𝐖 𝑙 𝝏𝐖 𝑖

• Flattened Hessian matrix
• Applying Hessian-vector product [2] using

power iteration

Jackknife Uncertainty: Efficient Computation (Cont.)

4-D tensor• vectorize the first-order
• compute the element-wise second-order

- 16 -

[1] Kang, J. et al. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. In WWW 2022.
[2] Alaa, A. et al. Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions. In ICML 2020.

𝐈Θ∗ 𝑖 = 𝐇𝚯∗
−1∇Θ𝑟 𝑖, 𝑦𝑖 , Θ

∗

Algorithm: JuryGCN
❑Goal: to estimate uncertainty UΘ(𝑢) of node u.

❑Initialize: 𝜖 = −
1

|𝑉train|
, a GCN with parameter Θ

❑Key steps (for each training node):
• Compute node-wise loss 𝑟𝑖,Θ and derivative ∇Θ𝑟𝑖,Θ
• Evaluate the influence w.r.t. training node
• Compute LOO parameters/predictions/errors
• Compute lower and upper bound

❑Return: confidence interval of node u.

- 17 -

1

3
4

2

5

8

6

7

18 training nodes

2 7… testing nodes

Uncertainty
quantification

Roadmap

▪ Background & Motivation

▪ JuryGCN Formulation

▪ JuryGCN Algorithms

▪ JuryGCN Applications

▪ Experimental Results

▪ Conclusion

- 18 -

Applications: Active Learning on Node Classification

❑ Task: query the nodes for true labels ➔ node classifier
❑ General idea: select the most informative nodes

❑ Our idea: iteratively query the nodes with the largest uncertainty
𝐴𝑐𝑞 𝑉train = argmax𝑢∈𝑉trainUΘ(𝑢)

- 19 -

1

3
4

2

5

8

6

7

Query node 5

Unlabeled

Labeled

Applications: Semi-supervised Node Classification

❑ Existing objective: mean of loss from all training nodes

𝑅 =
1

|𝑉train|
෍

𝑖∈𝑉train

𝑟(𝑖, 𝑦𝑖 , Θ)

❑ Uncertainty-aware node-specific objective

𝑟𝑢 = −𝛽𝑢
𝜏log 𝑝𝑢

𝑖
𝛽𝑢 =

|UΘ(𝑢)|

σ𝑖∈𝑉train
|UΘ(𝑢)|

2

i-th class predictive
probability

normalizing over
all training nodes

(1) u is misclassified & 𝑝𝑢
𝑖

is small.

(2) u is well classified & 𝑝𝑢
𝑖

is large.

[1] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In ICCV 2017.

- 20 -

Roadmap

▪ Background & Motivation

▪ JuryGCN Formulation

▪ JuryGCN Algorithms

▪ JuryGCN Applications

▪ Experimental Results

▪ Conclusion

- 21 -

Experiment Settings

❑Datasets: 4 widely-adopted datasets
❑Evaluation metric: micro-F1
❑Comparison methods

• Active learning-based: AGE[1], ANRMAB[2], Coreset[3], SOPT-GCN[4],
Centrality, Random

• Semi-supervised: S-GNN[5], GPN[6], GCN[7], GAT[8]

❑Parameters
• Active node classification (Cora, Citeseer, Pubmed and Reddit)

• Query budget: 100, 100, 50, 250, step size: 20, 20, 10, 50
• Semi-supervised node classification

• hyperparameter: 𝜏 = 2, coverage: 𝛼 = 0.025

- 22 -

[1] Cai, H. et al. Active Learning for Graph Embedding. In arXiv 2017.
[2] Gao, L. et al. Active Discriminative Network Representation Learning. In IJCAI 2018.
[3] Sener, O. et al. Active Learning for Convolutional Neural Networks: A Core-set Approach. In arXiv 2017.
[4] Ng, Y. et al. Bayesian Semi-Supervised Learning with Graph Gaussian Processes. In NeurIPS 2018.

[5] Zhao, X. et al. Uncertainty Aware Semi-Supervised Learning on Graph Data. In NeurIPS 2020.
[6] Stadler, M. et al. Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification. In NeurIPS 2021.
[7] Kipf, T. et al. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR 2016.
[8] Veličković, P. et al. Graph Attention Networks. In ICLR 2017.

Experimental Results:
Active Learning on Node Classification

proposed method

Observation: JuryGCN achieves the best query performance

- 23 -

Experimental Results:
Semi-supervised Node Classification

proposed method

Observation: achieving better performance when #labels is smaller

- 24 -

Experimental Results: Efficiency

❑Metrics: running time, memory usage

Running time vs. #training labels Micro-F1 vs. memory usage

Observation: JuryGCN can achieve the best efficiency performance.

- 25 -

❑ coverage, 𝛼; hyperparameter, τ

Observation: constantly achieving good performance.

- 26 -

Experimental Results: Parameter Study

Roadmap

▪ Background & Motivation

▪ JuryGCN Formulation

▪ JuryGCN Algorithms

▪ JuryGCN Applications

▪ Experimental Results

▪ Conclusion

- 27 -

Conclusion

❑Problem: Jackknife Uncertainty Quantification on GCN
❑Solution:

• Jackknife+ estimation
• Influence-based approach

❑Applications:
• Active learning on node classification
• Semi-supervised node classification

❑Results: outperforming other comparison method
• Improve node classification accuracy
• Select the most informative nodes
• Efficient computation compared to re-training

- 28 -

Title: JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks
Authors: Jian Kang, Qinghai Zhou, Hanghang Tong
Email: jiank2@illinois.edu, qinghai2@illinois.edu

