

JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks

*: equal contribution

Applications of Graph Neural Networks

[1] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. In *arXiv 2016*.
[2] Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. In NeurIPS 2018.
[3] Zhang, S., Tong, H., Xia, Y., Xiong, L., & Xu, J. (2020, August). Nettrans: Neural cross-network transformation. In KDD 2020.
[4] Errica, F., Podda, M., Bacciu, D., & Micheli, A. (2019). A fair comparison of graph neural networks for graph classification. In arXiv 2019.

Uncertainty in Model Prediction

Examples

Regression

Classification

• Quantifying the uncertainty is important in high-risk applications

E.g., medical

[1] Peterson, J. C., Battleday, R. M., Griffiths, T. L., & Russakovsky, O. (2019). Human uncertainty makes classification more robust. In ICCV 2019. [2] Xiao, Y., & Wang, W. Y. (2019, July). Quantifying uncertainties in natural language processing tasks. In AAAI 2019.

Questions:

Q1: How uncertain is a GCN in its own predictions?

 \rightarrow Uncertainty quantification (UQ)

Q2: How to improve GCN predictions by leveraging uncertainty?

 \rightarrow Application of UQ

Existing Solutions: Bayesian-based

□Motivation: address over-smoothing/fitting

Key idea:
adaptively drop edges
Monte Carlo estimation for posterior uncertainty [1].

Limitations: not explicitly quantify the uncertainty on model prediction (ad-hoc)

[1] Hasanzadeh, A. et al. Bayesian graph neural networks with adaptive connection sampling. In ICML 2020. [2] Zhao, X., Chen, F., Hu, S., & Cho, J. H. (2020). Uncertainty aware semi-supervised learning on graph data. In NeurIPS 2020.

Existing Solutions:

Deterministic Quantification-based

- □ Motivation: estimate multi-source uncertainty for GNNs
- □ Key idea: a graph-based Dirichlet distribution to reduce errors in quantifying uncertainties [2].
- Limitations: changing the training procedure, e.g., additional parameters (e.g., Dirichlet distribution) or architectures (e.g., teacher network)

Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion

Problem Definition

Given:

(1) an undirected graph $G = \{V, \mathbf{A}, \mathbf{X}\};$

(2) an *L*-layer GCN with parameter Θ ;

(3) a task-specific objective $R(G, Y, \Theta)$ (Y: ground-truth)

□Find:

An uncertainty score $U_{\Theta}(u)$ for any node u in graph G w.r.t. parameters Θ and objective $R(G, Y, \Theta)$.

Preliminaries: Jackknife+ Resampling

 \Box Key idea: leaving out an observation \rightarrow evaluating prediction error (LOO) Given: training data: $D = \{(x_i, y_i) | i = 1, ..., n\}$; a test point (x^*, y^*) ; a trained model $f_{A}()$; target coverage α ; \Box Confidence interval: $[C^{-}(x^{*}), C^{+}(x^{*})]$ • $C^+(x^*) = Q_{1-\alpha}(P^+), C^-(x^*) = Q_{\alpha}(P^-)$ • $P^+ = \{f_{\theta_{-i}}(x^*) + |y_i - f_{\theta_{-i}}(x_i)| | i = 1, ..., n\}$ $P^{-} = \{ f_{\theta_{-i}}(x^{*}) - |y_{i} - f_{\theta_{-i}}(x_{i})| | i = 1, ..., n \}$ LOO prediction Error residual (generalization) Larger interval \rightarrow less confident

Jackknife+ Resampling: A Numerical Example

□Regression task: training set, {(x_1, y_1), ..., (x_5, y_5)}, a test point, (x^*, y^*) where $y^* = 10$, coverage, $\alpha = 0.2$

Challenges

□C1: How to formally define the Jackknife uncertainty for GNNs?

- Non-IID graph data
- □C2: How to efficiently compute the node uncertainty?
 - Avoid re-training

w.l.o.g, considering a node-level tasks (e.g., node classification)

$$\Theta^* = \operatorname{argmin}_{\Theta} R(G, Y_{\text{train}}, \Theta) = \operatorname{argmin}_{\Theta} \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_v, \Theta)$$

Training labels Training set Node-specific loss (cross-entropy)
 $r(v, y_v, \Theta) = -\sum_{i=1}^{c} y_v[i] \log(GCN(v, \Theta)[i])$

Jackknife Uncertainty: Definition

$$\begin{aligned} & \square \text{Confidence interval: } U_{\Theta}(u) = C_{\Theta}^{+}(u) - C_{\Theta}^{-}(u) & \text{Error residual:} \\ & err_{i} = \left| \left| y_{i} - GCN(i, \Theta_{\epsilon,i}^{*}) \right| \right|_{2} \\ & \square \text{Compute } C^{+}, C^{-} \quad C_{\Theta^{*}}^{-}(u) = Q_{\alpha}(\left\{ \left| \left| \text{GCN}(u, \Theta_{\epsilon,i}^{*}) \right| \right|_{2} - err_{i} \right| \forall i \in V_{\text{train}} \right\} \\ & C_{\Theta^{*}}^{+}(u) = Q_{1-\alpha}(\left\{ \left| \left| \text{GCN}(u, \Theta_{\epsilon,i}^{*}) \right| \right|_{2} + err_{i} | \forall i \in V_{\text{train}} \right\} \right) \\ & \square \text{Why Jackknife+: stable coverage} \\ & \text{Upweighting the loss of node } i: \\ & \Theta_{\epsilon,i}^{*} = \arg \min_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \arg \min_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \sum_{v} r(v, y_{v}, \Theta) \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin}_{\Theta} \epsilon r(i, y_{i}, \Theta) \frac{1}{|V_{\text{train}}|} \\ & \Theta_{\epsilon,i}^{*} = \operatorname{argmin$$

ך ל

Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion

Jackknife Uncertainty: Efficient Computation

 \Box Key idea: efficiently estimate $\Theta_{\epsilon,i}^*$ with influence function [1] **Taylor expansion over parameters** $\Theta_{\epsilon,i}^* \approx \Theta^* + \epsilon \mathbf{I}_{\Theta^*}(i)$ (1) where $\mathbf{I}_{\Theta^*}(i) = \frac{d\Theta_{\epsilon,i}^*}{d\epsilon}|_{\epsilon \to 0}$ \Box The influence function can be further computed as [2], $\mathbf{I}_{\Theta^*}(i) = \underbrace{\mathbf{H}_{\Theta^*}^{-1} \nabla_{\Theta} r(i, y_i, \Theta^*)}_{1} (2) \text{ Hessian matrix w.r.t. model parameters}$ $\mathbf{H}_{\Theta^*} = \frac{1}{|V_{\text{train}}|} \nabla_{\Theta}^2 R(G, Y_{\text{train}}, \Theta^*)$ By setting $\epsilon = -\frac{1}{|V_{\text{train}}|}$, the leave-one-out parameters, $\Theta_{\epsilon,i}^*$ (Eq. (1)) can be computed efficiently. Adjusting the weights by ϵ

Jackknife Uncertainty: Efficient Computation (Cont.)

□ Proposition: First-order derivative of GCN [1] w.r.t. the parameters in the *l*-th layer, i.e., $W^{(l)} \leftarrow \nabla_{W^{(l)}} r(i, y_i, \Theta)$ $I_{\Theta^*}(i) = H_{\Theta^*}^{-1} \nabla_{\Theta} r(i, y_i, \Theta^*)$

• Key idea: apply chain rule on layer parameters.

$$\nabla_{\mathbf{W}^{(l)}} \mathbf{r}(\mathbf{i}, \mathbf{y}_{\mathbf{i}}, \Theta) = \left(\widehat{\mathbf{A}} \mathbf{E}^{l-1}\right)^{T} \left(\frac{\partial \mathbf{r}(\mathbf{i}, \mathbf{y}_{\mathbf{i}}, \Theta)}{\partial \mathbf{E}^{(l)}} \odot \sigma' \left(\widehat{\mathbf{A}} \mathbf{E}^{(l-1)} \mathbf{W}^{(l)}\right)\right)$$

Hidden representations
$$\mathbf{E}^{(l)} = \sigma(\widehat{\mathbf{A}} \mathbf{E}^{(l-1)} \mathbf{W}^{(l)})$$

Normalized graph Laplacian

Jackknife Uncertainty: Efficient Computation (Cont.)

 $\mathbf{I}_{\Theta^*}(i) = \mathbf{H}_{\Theta^*}^{-1} \nabla_{\Theta} r(i, y_i, \Theta^*)$

□Theorem: Computing the Hessian tensor of GCN (the *i*-th and *l*-th layer) $\rightarrow S_{l,i} = \frac{\partial^2 R}{\partial \mathbf{w}^{(l)} \partial \mathbf{w}^{(i)}}$

```
) tensor
```

vectorize the first-order compute the element-wise second-order

- Flattened Hessian matrix
- Applying Hessian-vector product [2] using power iteration

THEOREM 1. (The Hessian tensor of GCN) Following the settings of Proposition 2, denoting the overall loss $R(\mathcal{G}, \mathcal{Y}_{train}, \Theta)$ as R and σ'_1 as $\sigma'(\hat{\mathbf{A}}\mathbf{E}^{(l-1)}\mathbf{W}^{(l)})$, the Hessian tensor $\mathfrak{H}_{l,i} = \frac{\partial^2 R}{\partial \mathbf{W}^{(l)} \partial \mathbf{W}^{(i)}}$ of R with respect to $\mathbf{W}^{(l)}$ and $\mathbf{W}^{(i)}$ has the following forms. *Case 1.* $i = l, \mathfrak{H}_{l,i} = 0$ *Case 2.* i = l - 1

$$\mathfrak{H}_{l,i}[:,:,c,d] = \left(\hat{\mathbf{A}} \frac{\partial \mathbf{E}^{(l-1)}}{\partial \mathbf{W}^{(i)}[c,d]}\right)^T \left(\frac{\partial R}{\partial \mathbf{E}^{(l)}} \circ \sigma_l'\right)$$
(11)

where $\frac{\partial \mathbf{E}^{(l-1)}}{\partial \mathbf{W}^{(l)}[\mathbf{c},d]}$ is the matrix whose entry at the *a*-th row and the b-th column is

$$\frac{\partial \mathbf{E}^{(l-1)}[a,b]}{\partial \mathbf{W}^{(l-1)}[c,d]} = \sigma_{l-1}'[a,b] (\hat{\mathbf{A}} \mathbf{E}^{(l-2)})[a,c] \mathbf{I}[b,d]$$
(12)

Case 3. *i* < *l* − 1

Case 4.

Apply Eq. (12) for the *i*-th hidden layer.
Forward to the
$$(l-1)$$
-th layer iteratively with

$$\frac{\partial \mathbf{E}^{(l-1)}}{\partial \mathbf{W}^{(i)}[c,d]} = \sigma'_{l-1} \circ \left(\hat{\mathbf{A}} \frac{\partial \mathbf{E}^{(l-2)}}{\partial \mathbf{W}^{(i)}[c,d]} \mathbf{W}^{(l-1)} \right)$$
(13)
Apply Eq. (11).
 $i = l + 1$
 $\tilde{\mathbf{D}} \cdot [i : c, d] = (\hat{\mathbf{A}} \mathbf{F}^{(l-1)})^T \left(\frac{\partial^2 R}{\partial \mathbf{W}^{(l-1)}} \circ \sigma' \right)$ (14)

$$\left(\frac{\partial \mathbf{E}^{(l)} \partial \mathbf{W}^{(l)}[c,d]}{\partial \mathbf{E}^{(l)} \partial \mathbf{W}^{(l)}[c,d]} = \mathbf{I}[b,c] \left[\hat{\mathbf{A}}^T \left(\frac{\partial R}{\partial \mathbf{E}^{(l+1)}} \circ \sigma'_{l+1} \right) \right] [a,d].$$

$$\begin{array}{l} \text{Case 5. } i > l+1 \\ - Compute \ \frac{\partial^2 R}{\partial \mathbf{E}^{(i-1)} \partial \mathbf{W}^{(i)}[c,d]} \ \text{whose} \ (a,b)\text{-th entry has the} \\ form \ \frac{\partial^2 R}{\partial \mathbf{E}^{(i-1)} [a,b] \partial \mathbf{W}^{(i)}[c,d]} = \mathbf{I}[b,c] \left(\hat{\mathbf{A}}^T \left(\frac{\partial R}{\partial \mathbf{E}^{(i)}} \circ \sigma'_{i} \right) \right) [a,d] \end{array}$$

$$\frac{\partial^2 R}{\partial t^2 R} = \frac{\partial^2 T}{\partial t^2 R} = \frac{\partial^$$

$$\left(\partial \mathbf{E}^{(l+1)}\partial \mathbf{W}^{(i)}[c,d]\right)^{\circ}$$

- Apply Eq. (14).

 $\partial \mathbf{E}^{(l)} \partial \mathbf{W}^{(i)}[c,d]$

(15)

Algorithm: JuryGCN

 \Box Goal: to estimate uncertainty $U_{\Theta}(u)$ of node u.

□ Initialize: $\epsilon = -\frac{1}{|V_{\text{train}}|}$, a GCN with parameter Θ

□ Key steps (for each training node):

- Compute node-wise loss $r_{i,\Theta}$ and derivative $\nabla_{\Theta} r_{i,\Theta}$
- Evaluate the influence w.r.t. training node
- Compute LOO parameters/predictions/errors
- Compute lower and upper bound

 \Box Return: confidence interval of node u.

Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results
- Conclusion

Applications: Active Learning on Node Classification

□ Task: query the nodes for true labels → node classifier
 □ General idea: select the most informative nodes

□ Our idea: iteratively query the nodes with the largest uncertainty $Acq(V_{\text{train}}) = \operatorname{argmax}_{u \in V_{\text{train}}} U_{\Theta}(u)$

Applications: Semi-supervised Node Classification

Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms v
- JuryGCN Applications v
- Experimental Results
- Conclusion

Experiment Settings

Datasets: 4 widely-adopted datasets Evaluation metric: micro-F1 Comparison methods

Datasets	Cora	Citeseer	PubMed	Reddit
# nodes	2, 708	3, 327	19, 717	232, 965
# edges	5, 429	4,732	44, 338	114, 615, 892
# features	1, 433	3, 703	500	602
# classes	7	6	3	41

- Active learning-based: AGE[1], ANRMAB[2], Coreset[3], SOPT-GCN[4], Centrality, Random
- Semi-supervised: S-GNN[5], GPN[6], GCN[7], GAT[8]
- Parameters
 - Active node classification (Cora, Citeseer, Pubmed and Reddit)
 - Query budget: 100, 100, 50, 250, step size: 20, 20, 10, 50
 - Semi-supervised node classification
 - hyperparameter: $\tau = 2$, coverage: $\alpha = 0.025$

[1] Cai, H. et al. Active Learning for Graph Embedding. In arXiv 2017.
[2] Gao, L. et al. Active Discriminative Network Representation Learning. In IJCAI 2018.
[3] Sener, O. et al. Active Learning for Convolutional Neural Networks: A Core-set Approach. In arXiv 2017.
[4] Ng, Y. et al. Bayesian Semi-Supervised Learning with Graph Gaussian Processes. In NeurIPS 2018.

Experimental Results:

Active Learning on Node Classification

Data	Query size	JURYGCN (Ours)	ANRMAB	AGE	Coreset	Centrality	Degree	Random	SOPT-GCN
Cora	20	51.1 ± 1.2	46.8 ± 0.5	49.4 ± 1.0	43.8 ± 0.8	41.9 ± 0.6	38.5 ± 0.7	40.5 ± 1.6	48.8 ± 0.7
	40	64.7 ± 0.8	61.2 ± 0.8	58.2 ± 0.7	55.4 ± 0.5	57.3 ± 0.7	48.4 ± 0.3	56.8 ± 1.3	62.6 ± 0.8
	60	69.9 ± 0.9	67.8 ± 0.7	65.7 ± 0.8	62.2 ± 0.6	63.1 ± 0.5	58.8 ± 0.6	64.5 ± 1.5	67.9 ± 0.6
	80	74.2 ± 0.7	73.3 ± 0.6	72.5 ± 0.4	70.2 ± 0.5	69.1 ± 0.4	67.6 ± 0.4	69.7 ± 1.6	73.6 ± 0.5
	100	75.5 ± 0.6	74.9 ± 0.4	74.2 ± 0.3	73.8 ± 0.4	74.1 ± 0.3	73.0 ± 0.2	74.2 ± 1.2	75.5 ± 0.7
Citeseer	20	38.4 ± 1.5	35.9 ± 1.0	33.1 ± 0.9	30.2 ± 1.2	35.6 ± 1.1	31.5 ± 0.9	30.3 ± 2.3	36.1 ± 0.7
	40	51.1 ± 0.9	46.7 ± 1.3	49.5 ± 0.6	42.1 ± 0.8	49.8 ± 1.3	39.8 ± 0.7	41.1 ± 1.8	49.2 ± 0.5
	60	58.2 ± 0.8	55.2 ± 0.9	56.1 ± 0.5	52.1 ± 0.9	57.1 ± 0.7	50.1 ± 1.1	49.8 ± 1.3	56.4 ± 0.5
	80	63.8 ± 1.1	63.2 ± 0.7	61.5 ± 0.8	59.9 ± 0.6	63.3 ± 1.0	58.8 ± 0.6	58.1 ± 1.1	63.2 ± 0.8
	100	64.3 ± 1.2	64.1 ± 0.5	63.2 ± 0.7	62.8 ± 0.4	63.9 ± 0.6	61.8 ± 0.5	62.9 ± 0.8	63.8 ± 0.6
Pubmed	10	61.8 ± 0.9	60.5 ± 1.3	58.9 ± 1.1	53.1 ± 0.7	55.8 ± 1.2	56.4 ± 1.5	52.4 ± 1.7	59.5 ± 0.6
	20	70.2 ± 0.6	66.8 ± 1.1	68.7 ± 0.7	62.8 ± 0.5	67.2 ± 1.4	64.3 ± 1.0	60.5 ± 1.4	67.9 ± 0.9
	30	73.9 ± 0.3	71.6 ± 0.8	72.8 ± 1.0	68.9 ± 0.3	73.5 ± 0.9	70.1 ± 0.7	68.9 ± 1.1	72.3 ± 0.8
	40	74.6 ± 0.4	73.2 ± 0.6	74.7 ± 0.8	72.8 ± 0.8	74.1 ± 0.7	72.0 ± 0.8	71.8 ± 1.2	73.8 ± 0.7
	50	75.4 ± 0.5	74.7 ± 0.4	75.1 ± 0.5	73.5 ± 0.6	74.2 ± 0.6	72.9 ± 0.5	73.1 ± 1.0	75.2 ± 0.5
Reddit	50	69.7 ± 1.7	67.8 ± 0.9	64.2 ± 1.1	62.1 ± 0.6	65.5 ± 1.2	62.5 ± 1.4	63.7 ± 2.4	68.1 ± 1.2
	100	82.9 ± 1.5	81.3 ± 1.0	79.5 ± 0.8	81.2 ± 1.0	78.2 ± 0.9	81.1 ± 1.2	80.5 ± 1.6	80.4 ± 1.3
	150	86.0 ± 1.4	84.3 ± 0.7	83.2 ± 0.4	84.8 ± 0.9	84.1 ± 1.1	82.5 ± 1.2	81.5 ± 1.4	85.0 ± 1.5
	200	88.1 ± 0.9	86.1 ± 0.8	85.8 ± 0.5	85.5 ± 0.8	87.5 ± 0.8	85.4 ± 0.7	83.1 ± 1.8	87.2 ± 0.9
	250	89.2 ± 0.8	87.6 ± 0.7	87.1 ± 0.4	86.6 ± 1.1	88.7 ± 0.6	86.1 ± 1.0	87.3 ± 1.5	87.8 ± 1.1

Observation: JuryGCN achieves the best query performance

Experimental Results: Semi-supervised Node Classification

proposed method

Observation: achieving better performance when #labels is smaller

Experimental Results: Efficiency

□Metrics: running time, memory usage

Observation: JuryGCN can achieve the best efficiency performance.

Experimental Results: Parameter Study

\Box coverage, α ; hyperparameter, τ

Observation: constantly achieving good performance.

Roadmap

- Background & Motivation
- JuryGCN Formulation
- JuryGCN Algorithms
- JuryGCN Applications
- Experimental Results \checkmark
- Conclusion

Conclusion

Problem: Jackknife Uncertainty Quantification on GCN
Solution:

- Jackknife+ estimation
- Influence-based approach

Applications:

- Active learning on node classification
- Semi-supervised node classification
- **Q**Results: outperforming other comparison method
 - Improve node classification accuracy
 - Select the most informative nodes
 - Efficient computation compared to re-training

GCN

10³ #labels