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The Ubiquity of Graphs
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Knowledge graphMolecular graph

Power grid

Collaboration network

Brain networkRoad network

This Tutorial: Graphs = Networks



Graph Mining: Applications
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Computational bioinformatics

Credit scoring Financial fraud detection

Smart city
[1] Xu, X., Zhou, C., & Wang, Z.. Credit Scoring Algorithm based on Link Analysis Ranking with Support Vector Machine. ESWA 2009.
[2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H.. Hidden: Hierarchical Dense Subgraph Detection with Application to Financial Fraud Detection.
SDM 2017.
[3] Luo, S., Shi, C., Xu, M., & Tang, J.. Predicting Molecular Conformation via Dynamic Graph Score Matching. NeurIPS 2021. 
[4] Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., ... & Yu, J.. Traffic Flow Prediction via Spatial Temporal Graph Neural Network. WWW 2020.



Graph Mining: How To
• A pipeline of graph mining

• Example: loan approval
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Input graph Mining model Mining results

Input Output

Node classification
algorithm

Approved Not Approved



Graph Mining: Who & What
• Who are in the same online community?
• Who is the key to bridge two academic areas? 
• Who is the master criminal mind?
• Who started a misinformation campaign?
• Which gene is most relevant to a given disease?
• Which tweet is likely to go viral?
• Which transaction looks suspicious?
• Which items shall we recommend to a user?
• …
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Graph Mining: Why and How
• How to ensure algorithmic fairness on graphs?

• How do fake reviews skew the recommendation results?
• How do the mining results relate to the input graph topology?
• Why are two seemingly different users in the same community?
• Why is a particular tweet more likely to go viral than another?
• Why does the algorithm ‘think’ a transaction looks suspicious?
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(loan approval)

This Tutorial



Algorithmic Fairness in Machine Learning
• Motivation

– No data and/or model are perfect
– Model trained on data could systematically harm a group of people

• Goals: (1) understand and (2) correct the bias(es)
• Examples: bias in machine learning systems
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[1] https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias



Algorithmic Fairness on Graphs
• Example: loan approval

• Question: how to ensure algorithmic fairness on graphs?
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P(approved |      ) = 2 / 3

P(approved |      ) = 1 / 3

Node classification
algorithm

Approved Not Approved
: male        
: female

Unfair!
Male has a higher 
approval rate than 
female

[1] http://tonghanghang.org/netfair.html
[2] http://jiank2.web.illinois.edu/tutorial/cikm21/fair_graph_mining.html

http://tonghanghang.org/netfair.html


Algorithmic Fairness: Definition
• Principle: lack of favoritism from one side or another
• Definitions of algorithmic fairness

– Group fairness
• Statistical parity
• Equal opportunity
• Equalized odds
• …

– Individual fairness
– Counterfactual fairness
– Difference principle
– …
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[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.
[2] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NeurIPS 2016.
[3] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.
[4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurIPS 2017.
[5] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.



Group Fairness: Statistical Parity
• Definition: equal acceptance rate

Pr! #𝑦 = 𝑐 = Pr" #𝑦 = 𝑐
– !𝑦: model prediction
– Pr!: probability for the protected group
– Pr": probability for the unprotected group
– Also known as demographic parity, disparate impact

• Example: loan approval
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Node classification
algorithm

Approved Not Approved

: male        
: female Pr %𝑦 = approved = 2/3

Pr %𝑦 = approved = 2/3

Fair result
Same approval rate for 
male and female

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.



Group Fairness: Equal Opportunity
• Definition: equal true positive rate

Pr! %𝑦 = 𝑐|𝑦 = 𝑐 = Pr" %𝑦 = 𝑐|𝑦 = 𝑐
– 𝑦: true label
– %𝑦: model prediction
– Pr!: probability for the protected group
– Pr": probability for the unprotected group

• Example: loan approval
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graph mining 
algorithm

Approved Not Approved

: truth = approved : truth = not approved

: male : female

Fair result
Same true positive rate 
for male and female

Pr %𝑦 = approved| = 1
Pr %𝑦 = approved| = 1

If hold for all classes, it 
is called equalized odds

[1] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NeurIPS 2016.



Individual Fairness
• Definition: similar individuals should have similar outcomes
• Formulation: Lipschitz inequality (most common)

𝑑* 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝐿𝑑+ 𝑥, 𝑦
– 𝑀: a mapping from input to output
– 𝑑3: distance metric for output
– 𝑑4: distance metric for input
– 𝐿: a constant scalar

• Example
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Input Space Output Space

𝑥

𝑦

𝑀(𝑥)

𝑀(𝑦)

𝑀 ⋅

𝑀 ⋅

𝑑# 𝑥, 𝑦 𝑑$ 𝑀 𝑥 ,𝑀 𝑦

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.



Counterfactual Fairness
• Definition: same outcomes for ‘different versions’ of the same candidate

Pr %𝑦#$#! = 𝑐|𝑠 = 𝑠%, 𝑥 = 𝐱 = Pr %𝑦#$#" = 𝑐|𝑠 = 𝑠&, 𝑥 = 𝐱
– Pr %𝑦#$#! = 𝑐|𝑠 = 𝑠%, 𝑥 = 𝐱 : version 1 of 𝐱 with sensitive demographic 𝑠%
– Pr %𝑦#$#" = 𝑐|𝑠 = 𝑠&, 𝑥 = 𝐱 : version 2 of 𝐱 with sensitive demographic 𝑠&

• Example: causal graph of loan approval
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gender

race

education
history

current
job

annual 
salary

approved  
Unfair!
gender and race can affect 
loan approval decision

Counterfactually fair
gender and race CANNOT affect 
loan approval decision

counterfactual version

[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurIPS 2017.



Rawlsian Difference Principle
• Origin: distributive justice
• Goal: fairness as just allocation of social welfare

-- John Rawls, 1971    

• Formulation: max-min problem
– Min: the least fortunate group with smallest welfare/utility
– Max: maximization of the corresponding utility

• Also known as max-min fairness, accuracy disparity
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“Inequalities are permissible when they maximize […] the 
long-term expectations of the least fortunate group.”

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.

• Justice as fairness
• Justice is a virtue of instituitions
• Free persons enjoy and acknowledge the rules

• Well-ordered society
• Designed to advance the good of its members
• Regulated by a public conception of justice



Challenge #1: Theoretical Challenge
• Assumption

– IID: independent and identically distributed
• Example

• Challenges: implication of non-IID nature on
– Measuring bias

• Dyadic fairness, degree-related fairness
– Mitigating unfairness

• Enforce fairness by graph structure imputation
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Classic machine learning Graph mining

Data IID samples Non-IID graph

Classic machine learning Graph mining

• Individuals are 
independent

• Cannot affect 
others

• Individuals are 
connected

• Can affect others 
through connection(s)



Challenge #2: Algorithmic Challenge
• Dilemma: utility vs. fairness
• Example: loan approval

– Utility = classification accuracy
– Fairness = statistical parity

• Questions
– Can we improve fairness at no cost of utility?
– If not, how to balance the trade-off between utility and fairness?
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Accurate but not fair Fair but not accurate

: truth = approved : truth = not approved

: male : female



Roadmap
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Part III: Other Fairness on Graphs  

Part II: Individual Fairness on Graphs  

Part I: Group Fairness on Graphs  

Part IV: Beyond Fairness on Graphs

Introduction

Part V: Future Trends



Overview of Part I 
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Group Fairness on Graphs

Fair Spectral Clustering

Clustering

Fairwalk

Embedding

CrossWalk

Compositional Fairness

FairGNN

Fair PageRank

Ranking



Preliminary: PageRank
• Assumption: important webpage → linked by many others
• Formulation

– Iterative method for the following linear system
𝐫 = 𝑐𝐀<𝐫 + 1 − 𝑐 𝐞

• 𝐀: transition matrix  
• 𝐫: PageRank vector
• 𝑐: damping factor     
• 𝐞: teleportation vector

– Closed-form solution
𝐫 = 1 − 𝑐 𝐈 − 𝑐𝐀< "𝟏𝐞

• Variants
– Personalized PageRank (PPR)
– Random Walk with Restart (RWR)
– …
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[1] Page, L., Brin, S., Motwani, R., & Winograd, T.. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab 1999.
[2] Haveliwala, T. H.. Topic-sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. TKDE 2003.
[3] Tong, H., Faloutsos, C., & Pan, J. Y.. Fast Random Walk with Restart and Its Applications. ICDM 2006.



Unfairness in PageRank
• PageRank score: a measure of node importance in the network
• Facts: some nodes hold more important/central positions in the network

– biased academic ranking w.r.t. gender → underestimation of scientific contribution by 
female

• Example
– Network: 1222 nodes of political blogs
– Groups: red and blue
– Red nodes: minority group

• ~48% of total nodes in graph
• ~33% of total PageRank mass
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Unfair ranking
Similar number of red nodes vs. blue nodes (48% red vs. 52% blue)
Much less PageRank mass of red nodes (33% red vs. 67% blue)

1. How to define group fairness for PageRank?
2. Can we enforce group fairness on PageRank?

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
[2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.



Fairness Measure: 𝜙-Fairness
• Given: (1) a graph 𝐺; (2) a parameter 𝜙
• Definition: a PageRank vector is 𝜙-fair if at least 𝜙 fraction of total PageRank mass is 

allocated to the protected group
• Variants and generalizations

– Statistical parity → 𝜙 = fraction of protected group
– Affirmative action → 𝜙 = a desired ratio (e.g., 20%)

• Example
– Protected group = red nodes
– 𝜙 = 1/3

21

0.6

0.7

0.5

0.45

0.6

0.6

0.5
0.6 + 0.7 + 0.5

<
1
3

Not 𝜙-fair! 𝜙-fair! 
0.6

0.45 + 0.6 + 0.6
≥
1
3

blue nodes

red nodes

blue nodes

red nodes

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
[2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.



Problem Definition: Fair PageRank
• Given

– A graph with transition matrix 𝐀
– Partitions of nodes

• Red nodes (ℛ): protected group
• Blue nodes (ℬ): unprotected group

• Find: a fair PageRank vector -𝐫 that is 
– 𝜙-fair
– Close to the original PageRank vector 𝐫
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Fair PageRank: Solutions
• Recap: closed-form solution for PageRank

𝐫 = 1 − 𝑐 𝐈 − 𝑐𝐀9 "𝟏𝐞
• Parameters in PageRank

– Damping factor 𝑐 avoids sinks in the random walk (i.e., nodes without 
outgoing links)

– Teleportation vector 𝐞 controls the starting node where a random walker 
restarts
• Can we control where the walker teleports to?

– Transition matrix 𝐀 controls the next step where the walker goes to
• Can we modify the transition probabilities?
• Can we modify the graph structure?
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Solution #1: fairness-sensitive PageRank

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.



Solution #1: Fairness-sensitive PageRank
• Intuition

– Find a teleportation vector 𝐞 to make PageRank vector 𝜙-fair
– Keep transition matrix 𝐀 and 𝐐< = 1 − 𝑐 𝐈 − 𝑐𝐀< "𝟏 fixed

• Observation: mass of PageRank 𝐫 w.r.t. red nodes ℛ
𝐫 ℛ = 𝐐9[ℛ, : ]𝐞

– 𝐐< ℛ, : : rows of 𝐐< w.r.t. nodes in set ℛ
• (Convex) optimization problem

min
𝐞

𝐐"𝐞 − 𝐫 #

s. t. 𝐞 𝑖 ∈ 0, 1 , ∀𝑖
𝐞 $= 1
𝐐'[ℛ, : ]𝐞 $= 𝜙

– Can be solved by any convex optimization solvers
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The fair PageRank 𝐐#𝐞 is as close as 
possible to the original PageRank 𝐫

The teleportation vector 𝐞 is a 
probability distribution

The fair PageRank 𝐐#𝐞
needs to be 𝜙-fair

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.



Fairness-sensitive PageRank: Example
• Settings: 𝜙 = 1/3 and protected node = red node

• Original PageRank

• Fairness-sensitive PageRank
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≥
1
3

0.5
0.6 + 0.7 + 0.5

<
1
3

Not 𝜙-fair! 

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.



Fairness-sensitive PageRank: Experiment
• Observation: the teleportation vector allocates more weight to the red nodes, 

especially nodes at the periphery of the network
– More likely to (1) restart at red nodes and (2) walk to other red nodes more often
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[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.

Fairness-sensitive PageRankPageRank Protected group

Unprotected group

NOTE: size is proportional to 
score in the teleportation 
vector



Fair PageRank: Solutions
• Recap: closed-form solution for PageRank

𝐫 = 1 − 𝑐 𝐈 − 𝑐𝐀9 "𝟏𝐞
• Parameters in PageRank

– Damping factor 𝑐 avoids sinks in the random walk (i.e., nodes without 
outgoing links)

– Teleportation vector 𝐞 controls the starting node where a random walker 
restarts
• Can we control where the walker teleports to?

– Transition matrix 𝐀 controls the next step where the walker goes to
• Can we modify the transition probabilities?
• Can we modify the graph structure?
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Solution #2: locally fair PageRank

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.



Solution #2: Locally Fair PageRank
• Intuition: adjust the transition matrix A to obtain a fair random walk
• Neighborhood locally fair PageRank

– Key idea: jump with probability 𝜙 to red nodes and (1- 𝜙) to blue nodes
– Example
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𝑥

1/4

1/2

1/4
𝑥 Locally Fair 

(𝜙 = 0.5)

1/2

1/3

1/3

1/3

Protected group

Unprotected group

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.



Solution #2: Locally Fair PageRank
• Residual locally fair PageRank

– Key idea: jump with 
• Equal probability to 1-hop neighbors
• A residual probability 𝛿 to the other red nodes 

– Example

• Residual allocation policies: neighborhood allocation, uniform 
allocation, proportional allocation, optimized allocation
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𝑥

𝟏 − 𝜹
𝟑

𝟏 − 𝜹
𝟑

𝟏 − 𝜹
𝟑

Red 
Nodes

𝛿 +
1 − 𝛿
3

= 𝜙𝛿
1 − 𝛿

Protected group

Unprotected group

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
• Neighborhood allocation: allocate the residual to protected neighbors, equivalent to neighborhood locally fair PageRank
• Uniform allocation: uniformly allocate the residual to all protected nodes
• Proportional allocation: allocated the residual to all protected nodes proportionally to their PageRank score
• Optimized allocation: allocate the residual to all protected nodes while minimizing the difference with original PageRank score



Locally Fair PageRank: Experiment
• Observation: PageRank weight is shifted to the blue nodes at boundary
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[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.

𝜙 = 0.5

Neighborhood Locally Fair PageRankPageRank Protected group

Unprotected group

NOTE: size is proportional to 
score in the PageRank vector



Fair PageRank: Solutions
• Recap: closed-form solution for PageRank

𝐫 = 1 − 𝑐 𝐈 − 𝑐𝐀9 "𝟏𝐞
• Parameters in PageRank

– Damping factor 𝑐 avoids sinks in the random walk (i.e., nodes without 
outgoing links)

– Teleportation vector 𝐞 controls the starting node where a random walker 
restarts
• Can we control where the walker teleports to?

– Transition matrix 𝐀 controls the next step where the walker goes to
• Can we modify the transition probabilities?
• Can we modify the graph structure?
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Solution #3: best fair edge identification

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.



Solution #3: Best Fair Edge Identification
• Intuition: add edges that can improve the PageRank fairness to the graph
• Example

– = protected node
– 𝜙 = 1/3

• Question: how to find the edges with the highest improvement?
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[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.

𝐫 = 𝐐%𝐞 =

0.257

0.486

0.257

A𝐫 = E𝐐%𝐞 =

0.333

0.333

0.333

𝜙-fair! 
0.333

0.333 + 0.333 + 0.333
=
1
3

0.257
0.257 + 0.486 + 0.257

<
1
3

Not 𝜙-fair! 

New edge to add



Best Fair Edge Identification: Problem Definition
• Given

– 𝐺 = (𝒱, ℰ)
• ℰ: edge set
• 𝒱: node set

– 𝒮 ⊆ 𝒱: protected node set
– 𝑝ℰ 𝒮 = ∑G∈𝒱 𝑝ℰ 𝑖 : total PageRank mass of nodes in 𝒮 on graph with edge set ℰ

• Fairness gain of edge addition
gain 𝑥, 𝑦 = 𝑝ℰ∪ B,C 𝒮 − 𝑝ℰ 𝒮

• Goal: find the edge 𝑥, 𝑦 , ∀𝑥, 𝑦 ∈ 𝒱, such that
argmax

B,C
gain 𝑥, 𝑦

• Question: how to efficiently compute the gain?
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Naive method
Exhaustively recompute 
PageRank with the 
addition of each node pair

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.



Best Fair Edge Identification: Fairness Gain
• Main result: for a node 𝑥, the gain of adding a link to another node 𝑦

gain 𝑥, 𝑦 = Λ 𝑥, 𝑦 𝑝ℰ 𝑥
where Λ 𝑥, 𝑦 has the form

Λ 𝑥, 𝑦 =

𝑐
1 − 𝑐 𝑝ℰ 𝒮|𝑦 − 1

𝑑0
∑1 ∈𝒩! 𝑝ℰ 𝒮|𝑢

𝑑0 +
𝑐

1 − 𝑐
1
𝑑0

∑1 ∈𝒩! 𝑝ℰ 𝑥|𝑢 − 𝑝ℰ 𝑥|𝑦 + 1

– 𝑝ℰ 𝑥|𝑦 : personalized PageRank (PPR) score of node 𝑥, with query node 𝑦, based on edge set ℰ
– 𝑝ℰ 𝒮|𝑦 = ∑%∈𝒮 𝑝ℰ 𝑖|𝑦 : total PPR mass of nodes in 𝒮, with query node 𝑦, based on edge set ℰ

• 𝑝ℰ 𝑥 : node x should have high PageRank score
• 𝑑0: node x should have small degree

• 𝑝ℰ 𝑥|𝑦 − 4
5!
∑1 ∈𝒩! 𝑝ℰ 𝑥|𝑢 : node 𝑦 is close to node 𝑥

• 𝑝ℰ 𝒮|𝑦 − 4
5!
∑1 ∈𝒩! 𝑝ℰ 𝒮|𝑢 : node 𝑦 is more sensitive than the source node 𝑥’s neighborhood
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[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.

degree of 
source node 

The ‘sensitivity’ of 
target node 𝑦

The average ‘sensitivity’ of source 
node 𝑥’s neighbors

Average proximity of node 𝑥’s neighbors to 𝑥



Best Fair Edge Identification: Experiment
• Observation: the proposed method find the best edges to improve PageRank 

fairness 
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[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.
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Baseline 
Methods

Proposed 
Methods

• FREC: select edge 𝑥, 𝑦 with highest gain 𝑥, 𝑦 = Λ 𝑥, 𝑦 𝑝ℰ 𝑥
• PREC: select edge 𝑥, 𝑦 with highest gain 𝑥, 𝑦 | 𝑥 = Λ 𝑥, 𝑦 𝑝ℰ 𝑥|𝑥

• E_FREC: select edge 𝑥, 𝑦 with highest gain 𝑥, 𝑦 𝑝"## 𝑥, 𝑦
• E_PREC: select edge 𝑥, 𝑦 with highest gain 𝑥, 𝑦 | 𝑥 𝑝"## 𝑥, 𝑦

* 𝑝!"" 𝑥, 𝑦 : prediction probability by a logistic regression classifier on the existence of 𝑥, 𝑦 using node2vec embeddings



Overview of Part I 
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Preliminary: Spectral Clustering (SC)
• Goal: find 𝑘 clusters such that 

• Optimization problem

where 𝐋 is Laplacian matrix of 𝐀, 𝐔 is a matrix with 𝑘 orthonormal column vectors
• Solution: rank-𝑘 eigen-decomposition

– 𝐔 = eigenvectors with 𝑘 smallest eigenvalues

• Example
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min
𝐔

Tr 𝐔<𝐋𝐔 s. t. 𝐔<𝐔 = 𝐈

maximize intra-connectivity 

minimize inter-connectivity 
Ratio cut

All female individuals 
are grouped together

All male individuals are 
grouped together

Unfair clustering
The clustering results are highly 
correlated with gender

[1] Ng, A. Y., Jordan, M. I., & Weiss, Y.. On Spectral Clustering: Analysis and an Algorithm. NeurIPS 2002.
[2] Shi, J., & Malik, J.. Normalized Cuts and Image Segmentation. TPAMI 2000.



Fairness Measure: Balance Score
• Intuition: fairness as balance among clusters

• Given: a node set 𝑉 with
– ℎ demographic groups: 𝑉 = 𝑉$ ∪ 𝑉#…∪ 𝑉&
– 𝑘 clusters: 𝑉 = 𝐶$ ∪ 𝐶#…∪ 𝐶'

• Definition

balance 𝐶( = min
)*)-∈[&]

𝑉) ∩ 𝐶(
𝑉). ∩ 𝐶(

∈ 0, 1 , ∀𝑙 ∈ [1,2, … , 𝑘]

• Intuition: higher balance → fairer 
– Each demographic group is presented with similar fractions as in the whole dataset for every cluster

• Example
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𝑉$: female group

𝑉#: male group

𝐶* 𝐶+
balance 𝐶%

= min
𝑉% ∩ 𝐶%
|𝑉& ∩ 𝐶%|

,
|𝑉& ∩ 𝐶%|
𝑉% ∩ 𝐶%

= min ,

= 1

balance 𝐶&

= min
𝑉% ∩ 𝐶&
|𝑉& ∩ 𝐶&|

,
|𝑉& ∩ 𝐶&|
𝑉& ∩ 𝐶&

= min ,

= 1

𝑉$

𝑉#
[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.



Fair Spectral Clustering: Formulation
• Key idea: fairness as linear constraint

– Given
• The spectral embedding 𝐔 of 𝑛 nodes in 𝑙 clusters (𝐶(, … , 𝐶))
• ℎ demographic groups (𝑉(, … , 𝑉*)

– Define
• 𝐟 * 𝑖 = 1 if 𝑖 ∈ 𝑉* and 0 otherwise

• 𝐅 = a matrix with 𝐟 * − +'
,

𝟏, s ∈ 1,… , ℎ − 1 as column vectors

– Observation: 𝐅%𝐔 = 𝟎 ⇔ balanced clusters (i.e., fair clusters)

• Example

39

𝑉$: female group

𝑉#: male group

𝐟 $ 𝐟 #

𝐅 =

Fair fraction

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.



Fair Spectral Clustering: Solution
• Optimization problem

• Solution
– Observation: 𝐅9𝐔 = 𝟎 → 𝐔 is in the null space of 𝐅9
– Steps
• Define 𝐙 = orthonormal basis of null space of 𝐅<
• Rewrite 𝐔 = 𝐙𝐘

– Method: rank-𝑘 eigen-decomposition on 𝐙9𝐋𝐙
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min
𝐔

Tr 𝐘<𝐙<𝐋𝐙𝐘 s. t. 𝐘<𝐘 = 𝐈

min
𝐔

Tr 𝐔"𝐋𝐔 s. t. 𝐔"𝐔 = 𝐈, 𝐅"𝐔 = 𝟎
How to solve?

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.



Fair Spectral Clustering: Correctness
• Given

– A random graph with nodes 𝑉 by a variant of the Stochastic Block Model (SBM)
– Edge probability between two nodes 𝑖 and 𝑗

P 𝑖, 𝑗 =

𝑎, 𝑖 and 𝑗 in same cluster and in same group
𝑏, 𝑖 and 𝑗 not in same cluster but in same group
𝑐, 𝑖 and 𝑗 in same cluster but not in same group
𝑑, 𝑖 and 𝑗 not in same cluster and not in same group

for some 𝑎 > 𝑏 > 𝑐 > 𝑑
– A fair ground-truth clustering 𝑉 = 𝐶$ ∪ 𝐶#

• Theorem: Fair SC recovers the ground-truth clustering 𝐶$ ∪ 𝐶#
• Example

– Standard SC is likely to return 𝑉% ∪ 𝑉&
– Fair SC will return 𝐶% ∪ 𝐶&
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[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.



Fair Spectral Clustering: Experiment
• Observation: Fairer (higher balance score) with similar ratio cut values for the 

proposed method (Algorithm 1 in the figure)
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[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Preliminary: Node Embedding
• Motivation: learn low-dimensional node representations that preserve 

structural/attributive information
• Applications

– Node classification
– Link prediction
– Node visualization

44

Visualization of Node Embedding

Node clustering

Link prediction

[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. Deepwalk: Online Learning of Social Representations. KDD 2014.
[2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.
[3] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O.. Translating Embeddings for Modeling Multi-relational Data. NeurIPS 2013.



Preliminary: Setup of Node Embedding
• Two key components: pairwise scoring function + loss function
• Pairwise scoring function

– Suppose a node pair 𝑒 = 𝑢, 𝑣 ; 𝐳( is embedding of 𝑢; 
– Dot product: 𝑠 𝑒 = 𝑠 𝐳(, 𝐫, 𝐳) = 𝐳('𝐳)
– TransE: 𝑠 𝑒 = 𝑠 𝐳(, 𝐫, 𝐳) = − 𝐳( + 𝐫 − 𝐳) &

&

• Pairwise loss function
– Suppose 𝑒*" is 𝑖-th negative sample for node pair 𝑒 = 𝑢, 𝑣
– Skip-gram loss

𝐿+ 𝑠 𝑒 , 𝑠 𝑒%" , … , 𝑠 𝑒," = − log 𝜎 𝑠 𝑒 −V
*$%

,

log 1 − 𝜎 𝑠 𝑒*"

– Max-margin loss

𝐿+ 𝑠 𝑒 , 𝑠 𝑒%" , … , 𝑠 𝑒," =V
*$%

,

max 1 + 𝑠 𝑒 − 𝑠 𝑒*" , 0
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[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. Deepwalk: Online Learning of Social Representations. KDD 2014.
[2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.
[3] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O.. Translating Embeddings for Modeling Multi-relational Data. NeurIPS 2013.



Preliminary: Random Walk-based Node Embedding

• Goal: learn node embeddings that are predictive of nodes in its neighborhood
• Key idea

– Simulate random walk as a sequence of nodes
– Apply skip-gram technique to predict the context node

• Example
– DeepWalk: random walk for sequence generation
– Node2vec: biased random walk for sequence generation

• Return parameter 𝑝: how fast the walk explores the neighborhood 
of the starting node

• In-out parameter 𝑞: how fast the walk leaves the neighborhood 
of the starting node
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[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. Deepwalk: Online Learning of Social Representations. KDD 2014.
[2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.



Fairness Measure: Statistical Parity
• Statistical parity

– Given: (1) a sensitive attribute 𝒮; (2) multiple demographic groups 𝒢𝒮 partitioned by 𝒮
Extension to multiple groups: variance among the acceptance rates of each group in 𝒢𝒮

biasbc 𝒢𝒮 = Var acceptance−rate 𝐺𝒮 𝐺𝒮 ∈ 𝒢𝒮

• Example: a network of three       and three    
– acceptance−rate( )=2/3
– acceptance−rate( )=2/3
– biasbc = Var 4

d
, 4
d

= 0
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Fair result
Zero bias between male and 
female 

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
[2] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.



Fairwalk: Solution
• Key idea: modify the random walk procedure in node2vec
• Steps of Fairwalk

– Partition neighbors into demographic groups
– Uniformly sample a demographic group to walk to
– Randomly select a neighboring node within the chosen demographic group

• Example: ratio of each demographic group
– Original network vs. regular random walk vs. fair random walk

48

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.



Fairwalk vs. Existing Works
• Fairwalk vs. node2vec

– Node2vec: skip-gram model + walk sequences by original random walk
– Fairwalk: skip-gram model + walk sequences by fair random walk

• Fairwalk vs. fairness-aware PageRank
– Fairness-aware PageRank: the minority group should have a certain proportion of 

PageRank probability mass
– Fairwalk: all demographic group have the same random walk transition probability 

mass
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[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
[2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.
[3] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.



Fairwalk: Results on Statistical Parity
• Observations

– Fairwalk achieves a more balanced acceptance rates among groups
– Fairwalk increases the fraction of cross-group recommendations

50

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
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Recap: Statistical Parity in Fairwalk
• Statistical parity

– Given: (1) a sensitive attribute 𝒮; (2) multiple demographic groups 𝒢𝒮 partitioned by 𝒮
Extension to multiple groups: variance among the acceptance rates of each group in 𝒢𝒮

biasbc 𝒢𝒮 = disparity = Var acceptance−rate 𝐺𝒮 𝐺𝒮 ∈ 𝒢𝒮

• Example: a network of three       and three    
– acceptance−rate( )=2/3
– acceptance−rate( )=2/3
– biasbc = Var 4

d
, 4
d

= 0
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Fair result
Zero bias between male and 
female 

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.



Limitations: Fairwalk
• Steps of Fairwalk

– Partition neighbors into demographic groups
– Uniformly sample a demographic group to walk to
– Randomly select a neighboring node within the chosen demographic group

• Example: what if all neighbors belong to the same group?

• Observation: Fairwalk may get trapped into the majority group
• Question: how to let the walker go to group boundary and go across group more often?
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[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.



CrossWalk: Key Idea
• Key idea: upweight edges whose target nodes are either

– Closer to group boundary
– Not in the same demographic group as source node

• Example
– Edge strength is proportional to the transition probability 
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[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.



CrossWalk: Proximity to Group Boundary
• Intuition: assign higher weight to edges whose target nodes are closer to group 

boundary
• Solution: the proximity 𝑚 𝑢 of node 𝑢 can be calculated by

– Performing a fixed-length random walk (length = 𝑑) 𝑟 times
– Calculating the probability that it walks to a node in another demographic group 

• Example: suppose we have 2 random walks of length 5 for a node       

• Proximity-aware edge reweighting
– 𝑤AB: original edge weight between node 𝑢 and node 𝑣
– 𝒩A: neighborhood of node 𝑢
– 𝑝: a hyperparameter

𝑤456 ∝
𝑚 𝑣 7

∑8∈𝒩C𝑤48𝑚 𝑧 7𝑤45
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Walk #1: 

Walk #2: 
𝑚 =

1 + 2
2×5 = 0.3

[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.



CrossWalk: Solution
• Given

– 𝛼: a hyperparameter to control within-group/cross-group probability
– 𝒩(: node 𝑢’s neighborhood
– 𝑅( : number of different demographic groups in 𝒩(

• Edge reweighting: for a node 𝑢 and its neighbor 𝑣, ∀𝑣 ∈ 𝒩j
– 𝑢 and 𝑣 are in the same group: 𝑤()- = 1 − 𝛼 , ) -

∑.∈𝒩0 /0., 0 -𝑤()

– 𝑢 and 𝑣 are NOT in the same group: 𝑤()- = 1
|30|

, ) -

∑.∈𝒩0 /0., 0 -𝑤()

• Key steps
– Generate biased random walk sequences using the reweighted edges
– Learn node representations using skip-gram based techniques on the biased random walk sequences
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[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.



CrossWalk: Experiment 
• Observation: CrossWalk achieves a comparable performance in accuracy with 

a much smaller bias
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Node classification Link prediction

[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.
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Compositional Fairness in Node Embedding
• Why fairness for embeddings?

– Not just one classification task that considers fairness (e.g., ranking, clustering)

• Why compositional fairness?
– Compositional fairness: accommodation to a combination of sensitive attributes
– Often many possible sensitive attributes for a downstream task

59

recommendation clusteringranking

• Gender: male vs. female

• Race*: orange vs. green

* We use imaginary race groups to avoid 
potential offenses

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Fairness Measure: Representational Invariance
• Intuition: independence between the learned embedding 𝐳 and a sensitive 

attribute 𝑎
𝐳a ⊥ 𝑎a , ∀ node 𝑢

where 𝑎a is the sensitive value of node 𝑢
• Formulation: mutual information minimization

𝐼 𝐳a , 𝑎a = 0, ∀ node 𝑢
– Analogous to statistical parity in classification task
– Key idea: fail to predict 𝑎j using 𝐳j

• Solution: adversarial learning
– Maximize the error to predict sensitive feature
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Corresponding to 
‘adversarial’

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Compositional Fairness: Framework
• Overview: the proposed compositional fairness framework
• Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (Dk)
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Compositional 
Filter

Discriminators

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Key Component #1: Compositional Filter
(Also called compositional encoder, i.e., C-ENC)
• Goal: filter sensitive information from the embeddings

– The ‘filtered’ embedding should be invariant to those attributes

• Formulation

C−ENC 𝑢, 𝑆 =
1
𝑆
Y
b∈d

𝑓b ENC 𝑢

– Compositional filter: a collection of filters
– Filter: trainable function 𝑓k (neural networks, e.g., MLP)
– Input: node ID 𝑢 and the set of sensitive attributes 𝑆 (e.g., gender, age)
– Compositionality: summation over all sensitive attributes
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[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Compositional Fairness: Framework
• Overview: the proposed compositional fairness framework
• Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (Dk)
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Compositional 
Filter

Discriminators

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Key Component #2: Discriminator
• Goal: predict the sensitive attribute from the ‘filtered’ embeddings
• Formulation

Db C−ENC 𝑢, 𝑆 , 𝑎b = Pr 𝑎a = 𝑎b C − ENC 𝑢, 𝑆
– Dk: discriminator for 𝑘-th sensitive attribute
– Input: node 𝑢’s ‘filtered’ embedding and attribute value
– Pr 𝑎j = 𝑎k C − ENC 𝑢, 𝑆 : likelihood that node 𝑢 has that attribute value
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[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Compositional Fairness: Loss Function
• Pairwise loss function

𝐿 𝑒 = 𝐿lmnl 𝑠 𝑒 , 𝑠 𝑒3" , … , 𝑠 𝑒o"

+𝜆l
k∈p

l
qC∈𝒜C

log Dk C−ENC 𝑢, 𝑆 , 𝑎k

– 𝐿lmnl: pairwise loss function for graph embedding

– log Dk C−ENC 𝑢, 𝑆 , 𝑎k : the discriminator fails to predict sensitive attribute
correctly with the ‘filtered’ embeddings

• Advantages
– Simple intuition
– Flexible and easy-to-implement module
– Plug-and-play style
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[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Compositional Fairness: Fairness Results
• Task: classifying the sensitive attribute from the learned node embeddings

– Baseline methods: each adversary is a 2-layer MLP
• Baseline (no adversary): Vanilla model train without fairness consideration
• Independent adversary: independent adversarial model for each attribute
• Compositional adversary: The proposed full compositional model 

• Observations
– Accuracy of compositional adversary is no better than majority classifier
– Performance of compositional adversary is at the same level with independent adversaries
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AUC
Micro 

F1

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Compositional Fairness: Effectiveness Results
• Task: recommendation 
• Observation: there is only a small increase in root mean squared error (RMSE) 

compared with the vanilla model
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Epochs

RM
SE

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Preliminary: Graph Neural Network (GNN)
• Key idea: learn node representations by aggregating information from the neighbors

• Formulation

𝐡*
4!% = 𝜎 𝐖 4 ⋅ AGG 𝐡5

4 , ∀𝑗 ∈ 𝒩 𝑖

– GCN: AGG 𝐡/
( , ∀𝑗 ∈ 𝒩 𝑖 = ∑/∈𝒩.∪ 2 𝑎2/𝐡/

(

• 𝑎() =
%

*$+% *%+%
: weight of the edge between node 𝑖 w.r.t. node 𝑗

• 𝑑(, 𝑑): degree of node 𝑖 and node 𝑗, respectively

– GAT: AGG 𝐡/
( , ∀𝑗 ∈ 𝒩 𝑖 = ∑/∈𝒩.∪ 2 𝑏2/𝐡/

(

• 𝑏(): self attention weight of node 𝑖 w.r.t. node 𝑗

– GraphSAGE: AGG 𝐡/
( , ∀𝑗 ∈ 𝒩 𝑖 = 𝐡2

( || ∑/∈𝒩. 𝑐2/𝐡/
(

• 𝑐() =
%

*$+%
: weight of the edge between node 𝑖 w.r.t. node 𝑗

• ||: concatenation operation

• Applications: node classification, link prediction, …
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Node representations of nodes 𝑖 and 𝑗Weight parametersNeighborhood aggregation functionLocal neighborhood of node 𝑖

[1] Kipf, T. N., & Welling, M.. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.
[2] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y.. Graph Attention Networks. ICLR 2018.
[3] Hamilton, W., Ying, Z., & Leskovec, J.. Inductive Representation Learning on Large Graphs. NeurIPS 2017.



Preliminary: Adversarial Debiasing
• Key idea: learn node representations that

– Preserve structural/attributive information
– Fail to predict sensitive attribute of the corresponding nodes

• Solution: adversarial learning-based approach
– Minimize a task-specific loss function to learn ‘good’ representations
– Maximize the error of predicting sensitive feature to learn ‘fair’ representations

• Example: compositional fairness constraints (CFC) framework
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[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



Limitation: Adversarial Learning-based Debiasing
• Example: compositional fairness framework

𝐿 𝑒 = 𝐿6786 𝑠 𝑒 , 𝑠 𝑒%" , … , 𝑠 𝑒," + 𝜆V
9∈;

V
<1∈𝒜1

log D9 C−ENC 𝑢, 𝑆 , 𝑎9

– 𝐿6786: pairwise loss function to learn ‘good’ embedding

– log D9 C−ENC 𝑢, 𝑆 , 𝑎9 : an adversary (a discriminator) to maximize the error of predicting sensitive 
attribute to learn ‘fair’ embedding

• Limitations
– Require the sensitive attribute of many nodes to train a good discriminator
– Ignore the fact that sensitive information is hard to obtain due to privacy

• Question: can we apply adversarial learning-based debiasing with limited sensitive 
attribute information?
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[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.



FairGNN: Fairness with Limited Sensitive Attribute Information

• Key idea
– Train a sensitive attribute estimator to infer pseudo sensitive attribute
– Train adversary to learn ‘fair’ embedding using the pseudo sensitive attribute

• FairGNN framework
– GNN-based classifier to predict node label

• Any GNN can be the backbone
– Adversarial learning module to debias

• GCN-based sensitive attribute estimator
• Adversary

– Covariance minimizer
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[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.



FairGNN: Adversarial Debiasing Module
• GCN-based sensitive attribute estimator

– Intuition: generate pseudo sensitive attribute for additional supervision
– Loss function

ℒ> = −𝔼(∈𝒱2 𝑠( log �̂�(
• 𝑠3: ground-truth sensitive attribute information of node 𝑢
• �̂�3: predicted sensitive attribute information of node 𝑢
• 𝒱4: a set of nodes with ground-truth sensitive attribute information

• Adversary
– Intuition: maximize the error of predicting pseudo sensitive attribute information 
– Loss function

ℒ@ = 𝔼𝐡∼C(𝐡|#̃$%) log 𝑓@ 𝐡 + 𝔼𝐡∼C(𝐡|#̃$G) log 1 − 𝑓@ 𝐡
• �̃�: pseudo sensitive attribute information
• 𝐡 ∼ 𝑝(𝐡|�̃� = 1): randomly sample a node embedding whose corresponding node has �̃� = 1
• 𝑓3 𝐡 : output of 
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[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.



FairGNN: Covariance Minimizer 
• Observation: adversarial learning is notoriously unstable to train

– Failure to converge may cause discrimination

• Key idea: additional prerequisite of independence is needed to provide 
additional supervision signal
• Solution: absolute covariance between model prediction #𝑦 and pseudo 

sensitive attribute �̂� should be minimized
– Why absolute: covariance can be negative

ℒw = cov �̂�, #𝑦 = 𝔼[ �̂� − 𝔼[�̂�] #𝑦 − 𝔼[#𝑦] ]
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[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.



FairGNN: Overall Loss Function
• Regularized learning

ℒ = ℒx + ℒy − 𝛼ℒz + 𝛽ℒw
• Intuition

– Minimize the classification loss ℒ� to learn representative node representation 
– Minimize the sensitive attribute estimation loss ℒ� to generate accurate pseudo 

sensitive attribute information
– Maximize the adversarial loss ℒ� (i.e., −𝛼ℒ�) to debias the learned node representation
– Minimize the covariance ℒ� to stabilize the training of adversary
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[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.



FairGNN: Experiment
• Observation: FairGNN achieves comparable node classification accuracy with 

a much smaller bias
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[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.



Coffee Break
• 15 minutes coffee break
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Roadmap
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Part III: Other Fairness on Graphs  

Part II: Individual Fairness on Graphs  

Part I: Group Fairness on Graphs  

Part IV: Beyond Fairness on Graphs

Introduction

Part V: Future Trends



Overview of Part II 
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Individual Fairness on Graphs

InFoRM

Laplacian Regularizer

REDRESS

Learning-to-Rank



Graph Mining: An Optimization Perspective
• A pipeline of graph mining

• Formulation
– Input

• Input graph 𝐀
• Model parameters 𝜃

– Output: mining results 𝐘
• Examples: ranking vectors, class probabilities, embedding
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Input graph 𝐀 Mining model w/ parameter 𝜃 Mining results 𝐘

Input Output

Minimize task-specific 
loss function 𝑙(𝐀, 𝐘, 𝜃)

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Classic Graph Mining Algorithms
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Mining Task Task Specific Loss Function 𝒍() Mining Result 𝑌∗ Parameters

PageRank min
𝐫
𝑐𝐫# 𝐈 − 𝐀 𝐫 + (1 − 𝑐) 𝐫 − 𝐞 6

7 PageRank vector 𝐫 damping factor 𝑐
teleportation vector 𝐞

Spectral 
Clustering

min
𝐔
Tr 𝐔#𝐋𝐔

s. t. 𝐔#𝐔 = 𝐈
eigenvectors 𝐔 # clusters 𝑘

LINE (1st) min
𝐗

Y
%:(

,

Y
;:(

,

𝐀 𝑖, 𝑗 log𝑔 −𝐗 𝑗, : 𝐗 𝑖, : #

+𝑏𝔼;,~=-[log 𝑔 −𝐗 𝑗>, : 𝐗 𝑖, : # ]

embedding matrix 𝐗 embedding dimension 𝑑
# negative samples 𝑏

Examples of Classic Graph Mining Algorithm

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



InFoRM: Individual Fairness on GRaph Mining
• Research questions

RQ1. Measure: how to quantitatively measure individual bias?
• Problem #1: InFoRM measure problem

RQ2. Algorithms: how to enforce individual fairness?
• Problem #2: InFoRM algorithms problem

RQ3. Cost: what is the cost of individual fairness?
• Problem #3: InFoRM cost problem
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Problem #1: InFoRM Measure
• Questions

– How to determine if the mining results are fair?
– How to quantitatively measure the overall bias?

• Input
– Node-node similarity matrix 𝐒

• Non-negative, symmetric
– Graph mining algorithm 𝑙(𝐀, 𝐘, 𝜃)

• Loss function 𝑙 �
• Additional set of parameters 𝜃

– Fairness tolerance parameter 𝜖
• Output

– Binary decision on whether the mining result is fair
– Individual bias measure Bias(𝐘, 𝐒)
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



InFoRM Measure: Formulation
• Principle: similar nodes → similar mining results

• Mathematical formulation
𝐘 𝑖, : − 𝐘 𝑗, : H

& ≤
𝜖

𝐒 𝑖, 𝑗
∀𝑖, 𝑗 = 1,… , 𝑛

– Intuition: if 𝐒 𝑖, 𝑗 is high, 5
𝐒 2,/

is small → push 𝐘 𝑖, : and 𝐘 𝑗, : to be more similar

– Observation: inequality should hold for every pairs of nodes 𝑖 and 𝑗
• Limitation: too many constraints → too restrictive to be fulfilled

• Relaxed criteria: ∑*$%I ∑5$%I 𝐘 𝑖, : − 𝐘 𝑗, : H
&𝐒 𝑖, 𝑗 = 2Tr(𝐘-𝐋𝐒𝐘) ≤ 𝑚𝜖 = 𝛿
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.
[2] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.



InFoRM Measure: Solution
• InFoRM (Individual Fairness on GRaph Mining)

– Given: (1) a graph mining result 𝐘; (2) a symmetric similarity matrix 𝐒; and (3) a 
constant fairness tolerance 𝛿

– 𝐘 is individually fair w.r.t. 𝐒 if it satisfies

Tr 𝐘<𝐋𝐒𝐘 ≤
𝛿
2

– Overall individual bias is Bias 𝐘, 𝐒 = Tr 𝐘<𝐋𝐒𝐘

85

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



InFoRM Measure: Lipschitz Property
• 𝑫𝟏, 𝑫𝟐 -Lipschitz property: a function 𝑓 is 𝐷*, 𝐷+ -Lipschitz if it satisfies

𝐷* 𝑓 𝑖 , 𝑓 𝑗 ≤ 𝐿𝐷+ 𝑖, 𝑗 , ∀(𝑥, 𝑦)
– 𝐿 is Lipschitz constant

• InFoRM naturally satisfies 𝐷*, 𝐷+ -Lipschitz property as long as
– 𝑓 𝑖 = 𝐘[𝑖, : ]
– 𝐷3 𝑓 𝑖 , 𝑓 𝑗 = 𝐘 𝑖, : − 𝐘[𝑗, : ] �

4 , 𝐷4 𝑖, 𝑗 = 3
𝐒 G,�

• Lipschitz constant of InFoRM is 𝜖
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.
[2] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.



Problem #2: InFoRM Algorithms
• Question: how to mitigate the bias of the mining results?
• Input

– Node-node similarity matrix 𝐒
– Graph mining algorithm 𝑙(𝐀, 𝐘, 𝜃)
– Individual bias measure Bias(𝐘, 𝐒)

• Defined in the previous problem (InFoRM Measures)

• Output: revised mining result 𝐘∗ that minimizes
– Task-specific loss function 𝑙(𝐀, 𝐘, 𝜃)
– Individual bias measure Bias(𝐘, 𝐒)
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Individual Bias Mitigation
• Graph mining pipeline

• Observation: bias can be introduced/amplified in each component
– Solution: bias can be mitigated in each part

• Algorithmic frameworks
– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results
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mutually complementary

Input graph 𝐀 Mining model w/ parameter 𝜃 Mining results 𝐘

Input Output

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Debiasing the Input Graph
• Goal: bias mitigation via a pre-processing strategy
• Intuition: learn a new topology of graph m𝐀 such that

– |𝐀 is as similar to the original graph 𝐀 as possible 
– Bias of mining results on |𝐀 is minimized

• Optimization problem
min
𝐘

𝐽 = m𝐀 − 𝐀 �
+
+ 𝛼Tr 𝐘9𝐋𝐒𝐘

• Challenge: bi-level optimization
– Solution: exploration of KKT conditions
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s. t. 𝐘 = argmin𝐘 𝑙(m𝐀, 𝐘, 𝜃)
Bias measure

Consistency in graph topology

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.
[2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-set Attacks on Machine Learners. AAAI 2015.



Problem Reduction
• Considering the KKT conditions,

min
𝐘

𝐽 = m𝐀 − 𝐀 �
+
+ 𝛼Tr 𝐘9𝐋𝐒𝐘

• Proposed method
(1) Fix |𝐀 (|𝐀 = 𝐀 at initialization), find 𝐘 using current |𝐀
(2) Fix 𝐘, update |𝐀 by gradient descent
(3) Iterate between (1) and (2)

• Problem: how to compute the gradient w.r.t. m𝐀?
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s. t. 𝜕𝐘𝑙 m𝐀, 𝐘, 𝜃 = 0

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Gradient Computation
• Computing gradient w.r.t. m𝐀

𝜕𝐽
𝜕*𝐀

= 2 *𝐀 − 𝐀 + 𝛼 Tr 23𝐘𝐋𝐒
𝜕 3𝐘

𝜕*𝐀[𝑖, 𝑗]

d𝐽
d*𝐀

=

𝜕𝐽
𝜕*𝐀

+
𝜕𝐽
𝜕*𝐀

<

− diag
𝜕𝐽
𝜕*𝐀

, if undirected

𝜕𝐽
𝜕*𝐀

, if directed

– #𝐘 satisfies 𝜕𝐘𝑙 '𝐀, 𝐘, 𝜃 = 0

– 𝐇 = Tr 2#𝐘𝐋𝐒
,-𝐘

,E𝐀[/,1] is a matrix with 𝐇 𝑖, 𝑗 = Tr 2#𝐘𝐋𝐒
,-𝐘

,E𝐀[/,1]

• Question: How to efficiently calculate 𝐇?

91

Key component to calculate 

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Instantiation #1: PageRank
• Goal: efficient calculation of 𝐇 for PageRank
• Mining results 

𝐫 = 1 − 𝑐 𝐐𝐞
• Partial derivatives 

𝐇 = 2𝑐𝐐N𝐋𝐒𝐫𝐫N
–𝐐 = 𝐈 − 𝑐𝐀 =>

• Time complexity
– Straightforward: 𝑂(𝑛?)
– Ours: 𝑂(𝑚> +𝑚@ + 𝑛)

• 𝑚𝐀: number of edges in 𝐀
• 𝑚𝐒: number of edges in 𝐒
• 𝑛: number of nodes
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×

=

2𝑐𝐐'𝐋𝐒𝐫 𝐫'

𝐇

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Instantiation #2: Spectral Clustering
• Goal: efficient calculation of 𝐇 for spectral clustering
• Mining results 

𝐔 = eigenvectors with 𝑘 smallest eigenvalues
• Partial derivatives 

𝐇 = 2H
NO4

P

diag 𝐌N𝐋𝐒𝐮N𝐮NQ 𝟏R×T −𝐌N𝐋𝐒𝐮N𝐮NQ

– 𝜆% , 𝐮% = 𝑖-th smallest eigenpair
– 𝐌% = 𝜆%𝐈 − 𝐋𝐀 @

• Time complexity
– Straightforward: 𝑂 𝑘7 𝑚 + 𝑛 + 𝑘A𝑛 + 𝑘𝑛A

– Ours: 𝑂 𝑘 + 𝑟 𝑚( + 𝑛 + 𝑘 𝑚7 + 𝑛 + 𝑘 + 𝑟 7𝑛
• 𝑘: number of clusters
• 𝑟: number of largest eigenvalues
• 𝑚/: number of edges in 𝐀
• 𝑚0: number of edges in 𝐒
• 𝑛: number of nodes
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×

=

𝐌*𝐋𝐒𝐮* 𝐮*'

𝐌G𝐋𝐒𝐮G𝐮G<

Vectorize diag 𝐌%𝐋𝐒𝐮%𝐮%′
and stack it 𝑛 times Low-rank

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Instantiation #3: LINE (1st)
• Goal: efficient calculation of 𝐇 for LINE (1st)
• Mining results 

𝐘[𝑖, : ]𝐘 𝑗, : ' = log
𝑇(�𝐀 𝑖, 𝑗 + �𝐀[𝑗, 𝑖])
𝑑*𝑑5

P/R + 𝑑*
P/R𝑑5

− log 𝑏

– 𝑑2 = outdegree of node 𝑖, 𝑇 = ∑28$9 𝑑2
:/< and 𝑏 = number of negative samples

• Partial derivatives 
𝐇 = 2𝑓 �𝐀 + �𝐀' ∘ 𝐋𝐒 − 2diag 𝐁𝐋𝐒 𝟏I×I

– 𝑓(⋅) calculates Hadamard inverse, ∘ calculates Hadamard product
– 𝐁 = :

<
𝑓 𝐝=/< 𝐝"$/< % + 𝐝𝟏$×9 + 𝑓 𝐝:/< 𝐝$/< % + 𝐝𝟏$×9 with 𝐝? 𝑖 = 𝑑2?

• Time complexity
– Straightforward: 𝑂(𝑛:)
– Ours: 𝑂(𝑚$ +𝑚# + 𝑛)

• 𝑚(: number of edges in 𝐀
• 𝑚7: number of edges in 𝐒
• 𝑛: number of nodes
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Vectorize diag 𝐁𝐋𝐒
and stack it 𝑛 times

Element-wise in-place calculation

Stack 𝐝 𝑛 times

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Debiasing the Mining Model
• Goal: bias mitigation during model optimization
• Intuition: optimizing a regularized objective such that 

– Task-specific loss function is minimized
– Bias of mining results as regularization penalty is minimized

• Optimization problem
min
𝐘

𝐽 = 𝑙(𝐀, 𝐘, 𝜃) + 𝛼Tr 𝐘9𝐋𝐒𝐘
• Solution

– General: (stochastic) gradient descent ���𝐘 =
��(𝐀,𝐘,�)

�𝐘 + 2𝛼𝐋𝐒𝐘
– Task-specific: specific algorithm designed for the graph mining problem

• Advantage
– Linear time complexity incurred in computing the gradient
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Bias measure

Task-specific loss function

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Instantiations: Debiasing the Mining Model
• PageRank

– Objective function: min
𝐫
𝑐𝐫' 𝐈 − 𝐀 𝐫 + 1 − 𝑐 𝐫 − 𝐞 H

& + 𝛼𝐫'𝐋𝐒𝐫

– Solution: 𝐫∗ = 𝑐 𝐀 − 1
V
𝐋𝐒 𝐫∗ + (1 − 𝑐)𝐞

• PageRank on new transition matrix 𝐀 − @
A
𝐋𝐒

• If 𝐋𝐒 = 𝐈 − 𝐒, then 𝐫∗ = A
$!@

𝐀 + @
$!@

𝐒 𝐫∗ + $"A
$!@

𝐞

• Spectral clustering
– Objective function: min

𝐔
Tr 𝐔'𝐋𝐀𝐔 + 𝛼Tr 𝐔'𝐋𝐒𝐔 = Tr(𝐔'𝐋𝐀!𝛂𝐒𝐔)

– Solution: 𝐔∗ = eigenvectors of 𝐋𝐀!𝛂𝐒 with 𝑘 smallest eigenvalues
• Spectral clustering on an augmented graph 𝐀 + 𝛂𝐒

• LINE (1st)
– Objective function

max
𝐱C,𝐱D

log 𝑔(𝐱5𝐱*') + 𝑏𝔼5E∈[F log 𝑔 −𝐱5E𝐱*' − 𝛼 𝐱* − 𝐱5 H
&𝐒[𝑖, 𝑗]

– Solution: stochastic gradient descent 
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∀𝑖, 𝑗 = 1, … , 𝑛

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Debiasing the Mining Results
• Goal: bias mitigation via a post-processing strategy
• Intuition: no access to either the input graph or the graph mining model
• Optimization problem

min
𝐘

𝐽 = 𝐘 − w𝐘 �
+ + 𝛼Tr 𝐘9𝐋𝐒𝐘

– �𝐘 is the vanilla mining results
• Solution: (𝐈 + 𝛼𝐒)𝐘∗ = w𝐘

– Convex loss function as long as 𝛼 ≥ 0 → global optima by ���𝐘 = 0
– Solve by conjugate gradient (or other linear system solvers)

• Advantages
– No knowledge needed on the input graph
– Model-agnostic
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Bias measure, convex

Consistency of mining results, convex

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Problem #3: InFoRM Cost
• Question: how to quantitatively characterize the cost of individual fairness?  
• Input

– Vanilla mining result �𝐘
– Debiased mining result 𝐘∗

• Learned by the previous problem (InFoRM Algorithms)

• Output: an upper bound of w𝐘 − 𝐘∗ �

• Debiasing methods
– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results
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depend on specific graph topology/mining model

main focus

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



InFoRM Cost: Debiasing the Mining Results
• Given

– A graph with 𝑛 nodes and adjacency matrix 𝐀
– A node-node similarity matrix 𝐒
– Vanilla mining results �𝐘
– Debiased mining results 𝐘∗ = 𝐈 + 𝛼𝐒 "%�𝐘

• If 𝐒 − 𝐀 � = ∆, we have
�𝐘 − 𝐘∗ � ≤ 2𝛼 𝑛 ∆ + 𝑟𝑎𝑛𝑘 𝐀 𝜎��� 𝐀 �𝐘 �

• Observation: the cost of debiasing the mining results depends on
– The number of nodes 𝑛 (i.e., size of the input graph)
– The difference ∆ between 𝐀 and 𝐒
– The rank of 𝐀
– The largest singular value of 𝐀
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InFoRM: Experiment
• Graph mining task: PageRank
• Observation: effective in mitigating bias while preserving the performance of the vanilla 

algorithm with relatively small changes to the original mining results
– Similar observations for spectral clustering and LINE (1st)
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Overview of Part II 
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Individual Fairness on Graphs

InFoRM

Laplacian Regularizer

REDRESS

Learning-to-Rank



Individual Fairness on Graph Neural Network
• Goal: debias a graph neural network (GNN) to ensure individual fairness
• Key challenge: distance calibration

– Lipschitz condition (used in InFoRM)
𝑑3 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝐿𝑑4 𝑥, 𝑦

– Direct distance comparison fails to calibrate the differences between different individuals
• Example

• Question: Can we achieve fairness with natural calibration across individuals?
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[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.



REDRESS: Ranking basEd InDividual FaiRnESS
• Ranking-based individual fairness

– Given: (1) the pairwise node similarity matrix 𝐒\ of the input graph 𝐺; (2) the pairwise similarity matrix 
𝐒]𝐘 of the GNN output �𝐘

– �𝐘 is individually fair if, for each node 𝑖, it satisfies that 
ranking list derived by 𝐒\ 𝑖, ∶ = ranking list derived by 𝐒]𝐘[𝑖, ∶]

• Advantage: naturally calibrate across individuals
– No direct distance comparison
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[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.



REDRESS: Framework Overview
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• GNN backbone model
– Learn node representations

• Utility maximization
– Minimize the downstream 

task-specific loss

• Individual fairness 
optimization

– Enforce ranking-based 
individual fairness

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.



REDRESS: Backbone Model
• Goal: learn node representations by a GNN
• Formulation: 𝑙-th GNN Layer

ℎ¡
¢!* = 𝜎 𝐖 ¢ ⋅ AGG ℎ£

(¢), ∀𝑗 ∈ 𝒩 𝑖

– ℎG
� : embedding of node 𝑖 at 𝑙-th layer

– 𝐖 � : weight parameters at 𝑙-th layer
– AGG(⋅): information aggregation function (e.g., mean, weighted sum)
– 𝜎(⋅): activation function (e.g., ReLU)
– 𝒩 𝑖 : neighborhood set of node 𝑖

• Advantage: REDRESS works on any GNN model
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REDRESS: Framework Overview
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• GNN backbone model
– Learn node representations

• Utility maximization
– Minimize the downstream 

task-specific loss

• Individual fairness 
optimization

– Enforce ranking-based 
individual fairness

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.



REDRESS: Utility Maximization
• Goal: minimize the downstream task-specific loss function
• Loss function: cross-entropy loss

𝐿¤¥¦§¦¥¨ = − Y
¡,£ ∈𝒯

𝐘 𝑖, 𝑗 log �𝐘 𝑖, 𝑗

– 𝐘 𝑖, 𝑗 : 𝑖-th row and 𝑗-th column in ground truth 𝐘
– �𝐘 𝑖, 𝑗 : 𝑖-th row and 𝑗-th column in GNN predictions �𝐘
– 𝒯: a set of tuples

• Node classification: 𝒯 is a set of (node, class) tuples
• Link prediction: 𝒯 is a set of (node, node) tuples
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REDRESS: Framework Overview
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– Learn node representations

• Utility maximization
– Minimize the downstream 

task-specific loss

• Individual fairness 
optimization

– Enforce ranking-based 
individual fairness
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REDRESS: Individual Fairness Optimization
• Given: (1) pairwise node similarity matrix 𝐒ª of input graph 𝐺 and (2) pairwise 

similarity matrix 𝐒�𝐘 of GNN output �𝐘
• Goal: for each node 𝑖, ensure that the ranking lists derived from 𝐒ª 𝑖, : and 
𝐒�𝐘 𝑖, : are similar
• Example: ranking lists of node 𝑢*

• Problem: ranking is a non-differentiable operation
→ loss on the ranking lists will be non-differentiable

109

Ranking list derived by 𝐒G𝐘[𝟏, ∶] Ranking list derived by 𝐒𝑮[𝟏, ∶]
Unfair results
Rankings of 𝑢A and 
𝑢J are different in 
two ranking lists

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.



REDRESS: Individual Fairness Optimization
• Solution

– Consider the relative ranking orders of every node pair in 𝐒� and 𝐒 �𝐘
– Ensure that every node pair’s relative orders are consistent across 𝐒� and 𝐒 �𝐘

• Example: ranking lists of node 𝑢*
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Ranking list derived by 𝐒G𝐘[𝟏, ∶] Ranking list derived by 𝐒𝑮[𝟏, ∶]
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REDRESS: Relative Ranking Order
• Key idea: relative ranking order of 𝑢 and 𝑣 = Probability that 𝑢 ranks higher than 𝑣

– Inspired by learning-to-rank

• Input space: pairwise node similarity matrix 𝐒N of graph 𝐺

𝑃AB 𝑖 = $
#
1 + 𝑇AB 𝑖 𝑇AB 𝑖 = S

1
0
−1

• Output space: pairwise similarity matrix 𝐒O𝐘 of GNN output N𝐘
T𝑃AB 𝑖 =

1
1 + 𝑒pq 𝐒 C𝐘 r,A p𝐒 C𝐘 r,B

where 𝛼 is a constant scalar
• Fairness loss for a node pair

𝐿AB 𝑖 = −𝑃AB 𝑖 log T𝑃AB 𝑖 − 1 − 𝑃AB 𝑖 log 1 − T𝑃AB 𝑖
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𝑢 ranks higher than 𝑣

𝑣 ranks higher than 𝑢
𝑢 and 𝑣 has the same rank



REDRESS: Scale-up Computation
• Solution: focus on top-𝑘 similar nodes for each node 𝑖 in 𝐒 �𝐘

– Individual fairness: similar outcomes for similar individuals
– Define 𝑧@9 = similarity metric for two top-𝑘 ranking lists (e.g., NDCG@𝑘)

𝐿`abcd6ee =V
*

V
(

V
)

𝐿() 𝑖 Δ𝑧@9 (,)

where Δ𝑧@9 (,) = absolute value changes in 𝑧@9 if nodes 𝑢 and 𝑣 are swapped
– High 𝛥𝑧@9 (,) → 𝑢 and 𝑣 are dissimilar → more penalty if ranked wrong

• Example
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𝑂(𝑛𝑘#) time complexity



REDRESS: Overall Loss Function
• Utility loss

𝐿¤¥¦§¦¥¨ = − Y
¡,£ ∈𝒯

𝐘 𝑖, 𝑗 log �𝐘 𝑖, 𝑗

• Fairness loss
𝐿a® 𝑖 = −𝑃a® 𝑖 log �𝑃a® 𝑖 − 1 − 𝑃a® 𝑖 log 1 − �𝑃a® 𝑖

𝐿¯°¦±²³´´ =Y
¡

Y
a

Y
®

𝐿a® 𝑖 Δ𝑧@b a,®

• Total loss
𝐿 = 𝐿¤¥¦§¦¥¨ + 𝛾𝐿¯°¦±²³´´

where 𝛾 is the regularization hyperparameter
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REDRESS: Experiment
• Observations for node classification

– Comparable performance on model utility compared with the best ones
– Best performance on the ranking-based individual fairness

• Similar observations for link prediction
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Recap: Counterfactual Fairness
• Definition: same outcomes for ‘different versions’ of the same candidate

Pr %𝑦#$#! = 𝑐|𝑠 = 𝑠%, 𝑥 = 𝐱 = Pr %𝑦#$#" = 𝑐|𝑠 = 𝑠&, 𝑥 = 𝐱
– Pr %𝑦#$#! = 𝑐|𝑠 = 𝑠%, 𝑥 = 𝐱 : version 1 of 𝐱 with sensitive demographic 𝑠%
– Pr %𝑦#$#" = 𝑐|𝑠 = 𝑠&, 𝑥 = 𝐱 : version 2 of 𝐱 with sensitive demographic 𝑠&

• Intuition: perturbations on the sensitive attribute should not affect the output
• Example: causal graph of loan approval
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gender
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education
history

current
job

annual 
salary

approved  
Unfair!
gender and race can affect 
loan approval decision

counterfactual version

[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurIPS 2017.



Preliminary: Stability
• Definition: perturbations on the input data should not affect the output too 

much
• Mathematical formulation: Lipschitz condition

𝑑* 𝑀 𝑥 ,𝑀 -𝑥 ≤ 𝐿𝑑+ 𝑥, -𝑥
– 𝑀: a mapping from input to output
– 𝑑3: distance metric for output
– 𝑑4: distance metric for input
– 𝐿: Lipschitz constant
– �𝑥: perturbed version of original input data 𝑥
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[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.



Counterfactual Fairness vs. Stability
• Given

– 𝐀: binary adjacency matrix of a graph
– 𝐱(: feature vector 𝐱( of a node 𝑢
– 𝐛( = 𝐱(; 𝐀 𝑢, ∶ : information vector of node 𝑢
– �̧�: perturbed version of node 𝑢 with information vector ¹𝐛(

• Perturbation(s) on 𝐱K or 𝐀 𝑢, ∶
– ¹𝐛(: information vector of node �̧�
– �̧�#: counterfactual version of node 𝑢

• Modification on the value of sensitive attribute 𝑠 in 𝐱K
– ENC(𝑢): an encoder function that learns the embedding of node 𝑢

• Counterfactual fairness
ENC 𝑢 − ENC �𝑢 ¤ = 0

• Stability
ENC 𝑢 − ENC �𝑢 ¤ ≤ 𝐿 �𝐛j − 𝐛j ¤

• Question: can we learn node embedding that is both counterfactually fair and stable?
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[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.



NIFTY: Contrastive Learning-based Framework
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maximize similarity among embeddings of 𝑢, A𝑢, A𝑢)

𝑢

A𝑢
A𝑢)

Perturb the edge and 
attribute of node 𝑢

Change the value of 
a sensitive attribute

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.



NIFTY: Model Architecture
• Given

– 𝐡(
9 : representation of node 𝑢 at 𝑘-th layer

– 𝒩 𝑢 : neighborhood of node 𝑢
– 𝐖<

(9): self-attention weight matrix at 𝑘-th layer

– �𝐖<
9 = 𝐖L

(1)

𝐖L
1

-

: Lipschitz-normalization on 𝐖<
(9)

• 𝐖E
'

F
: spectral norm of 𝐖E

(')

– 𝐖I
(9): weight matrix associated with the neighbors of node 𝑢

• The 𝑘-th NIFTY layer learns node representation by 

𝐡j
k = 𝜎 |𝐖q

k"3 𝐡j
k"3 +𝐖¦

k"3 l
§∈𝒩 j

𝐡§
k"3

• NIFTY encoder ENC ⋅ = a stack of 𝐾 NIFTY layers
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NIFTY: Contrastive Loss
• Goal: maximize similarity among embeddings of 𝑢, �̧�, �̧�#

• Augmented graph: either (1) edge/attribute perturbed graph or (2) counterfactual graph with modification on the value 
of sensitive attribute

• Formulation

𝐿# 𝑢, �̧�ag8 =
𝐷 FC 𝐳( , SG 𝐳(

ag8 + 𝐷 FC 𝐳(
ag8 , SG 𝐳(

2
– 𝐷(⋅,⋅): cosine distance
– A𝑢IJK: counterpart of node 𝑢 in the augmented graph
– 𝐳3, 𝐳3

IJK: representation of nodes 𝑢 and A𝑢IJK learned by NIFTY encoder
– FC(⋅): a fully-connected layer for embedding alignment
– SG(⋅): stop-grad operator, stop calculating the gradient with respect to its input

• Intuition: minimize 𝐿#
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FC 𝐳( and 𝐳(
ag8 are similar

FC 𝐳(
ag8 and 𝐳( are similar

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.



NIFTY: Overall Loss Function
• Overall loss function

𝐿 = 1 − 𝜆 𝐿½ + 𝜆 𝔼a 𝐿¾ 𝑢, -𝑢 + 𝔼a 𝐿¾ 𝑢, -𝑢´
– 𝜆: regularization hyperparameter
– 𝐿: task-specific loss 

• E.g., cross-entropy loss for node classification
– 𝔼j 𝐿® 𝑢, �𝑢 : similarity loss of original graph and the edge/attribute perturbed graph
– 𝔼j 𝐿® 𝑢, �𝑢¯ : similarity loss of original graph and the counterfactual graph

• Intuition: jointly minimize
– The task-specific loss
– Distance among embeddings of 𝑢, �𝑢 and �𝑢®, for each node 𝑢
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NIFTY: Counterfactual Fairness
• Given

– ENC ⋅ : a 𝐾-layer NIFTY encoder
• E𝐖E

' : self-attention weight matrix at 𝑘-th layer
– 𝑠: a binary-valued sensitive attribute 𝑠
– 𝑢: a node 𝑢 in the graph
– �̧�#: the counterfactual version of node 𝑢 by flipping the value of 𝑠

• NIFTY is counterfactually fair with the unfairness upper bounded as follows

ENC 𝑢 − ENC �𝑢® ¤ ≤�
k°3

±

|𝐖q
k

¤

• Remarks
– Upper bounded counterfactual unfairness (i.e., ENC 𝑢 − ENC �̧�# C)

– Normalized �𝐖<
9 → counterfactually fair ENC 𝑢
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NIFTY: Stability
• Given

– ENC ⋅ : a 𝐾-layer NIFTY encoder
• Q𝐖U

P : self-attention weight matrix at 𝑘-th layer
– 𝑠: a binary-valued sensitive attribute
– 𝐛A: a node 𝑢 with information vector 𝐛A
– �̂�A: perturbed version _𝑢 of node 𝑢 with information vector

• NIFTY learns stable node embedding

ENC 𝑢 − ENC R𝑢 7 ≤T
ST>

U

*𝐖V
S

7
𝐛4 − W𝐛4 7

• Remarks
– Lipschitz constant = ∏st$

u a𝐖v
s

w
– Normalized a𝐖v

s → small Lipschitz constant → stable ENC 𝑢
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NIFTY: Experiment
• Observation: NIFTY improves both fairness and stability
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Limitation: Counterfactual Fairness and NIFTY
• Counterfactual fairness: same outcomes for ‘different versions’ of the same 

candidate
• Counterfactual graph generation: perturbation on the sensitive attribute of 

central node 𝑢
• Uniqueness of graph data: change in neighboring nodes could affect the 

central node 
– Not considered in NIFTY
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[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurIPS 2017.
[2] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.



GEAR: Graph Counterfactual Fairness
• Intuition: same outcomes of a node no matter how the sensitive attribute 

changes for any node in the graph
• Given

– 𝐺 = (𝐀, 𝐗): a graph
• 𝐀: adjacency matrix
• 𝐗: node feature matrix

– 𝐬: a vector representing the sensitive attribute of all nodes
• 𝐬[𝑖] is the sensitive attribute of node 𝑖 in 𝐺

– 𝐬′: the counterfactual version of 𝐬 by flipping the sensitive attribute of any node in 𝐀
– 𝐘 𝑖, : ®°𝐬,�°(𝐀,𝐗): mining results of node 𝑖 when the sensitive attribute vector is 𝐬 and 

input graph is (𝐀, 𝐗)
• The mining results 𝐘 satisfies graph counterfactual fairness if it satisfies

𝐘 𝑖, : ¾Â𝐬,ªÂ(𝐀,𝐗) = 𝐘 𝑖, : ¾Â𝐬D,ªÂ(𝐀,𝐗)
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GEAR: Framework Overview
• Module #1: counterfactual data augmentation
• Module #2: fair representation learning 

130
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GEAR: Counterfactual Data Generation
• Goal: counterfactual graph generation by perturbing sensitive attribute of arbitrary node(s) 

in the graph
• Assumption: exogenous sensitive attribute → no parent variable in the causal graph
• Challenges

– C1: too many possible combinations of perturbation
– C2: modeling of exogenous sensitive attribute
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C1: Reducing Number of Counterfactuals
• Problems: too many possible combinations of sensitive attribute perturbation
• Facts

– The causal model of a large graph is hard to obtain
– Each node is mostly influenced by its nearest neighbors

• Solution: local subgraph
– Random walk with restart for proximity computation
– Top-k node selection for subgraph extraction
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Subgraph

: Node

: Central node

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.



C2: Modeling Exogenous Sensitive Attribute 
• Exogenous sensitive attribute: no parent variable in the causal graph

– Cannot be affected by graph structure or any node features
– Can affect graph structure and other node features

• Key idea: decouple the information about graph structure and sensitive 
attribute
• Solution: graph variational auto-encoder (GVAE) + fairness constraints

– GVAE: learn representative embedding about graph structure
– Fairness constraints: decouple the information about graph structure and sensitive 

attribute
• Key idea: train a discriminator to predict sensitive attribute from embedding

• Optimization: alternating stochastic gradient descent
– Minimize reconstruction loss of GVAE
– Maximize the prediction error of discriminator
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GEAR: Counterfactual Data Generation
• Extract local subgraph of a central node with random walk with restart

• Train a fair GVAE to learn embedding for subgraph reconstruction

• Flip the sensitive attribute of a node in the subgraph
– Self-perturbation: flip the sensitive attribute of the central node
– Neighbor perturbation: flip the sensitive attribute of any nodes except 

• Generate two counterfactual subgraphs based on self-perturbation and neighbor perturbation
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GEAR: Fair Representation Learning
• Goal: learn node representation that is invariant to counterfactual graphs

• Key idea: for a node 𝑢, minimize the distance among 
– Original embedding (𝑧3), 
– Self-perturbation embedding (𝑧3) 
– Neighbor-perturbation embedding (𝑧3)

• Contrastive loss
𝐿 = 𝔼( 1 − 𝜆# 𝑑 𝑧(, 𝑧( + 𝜆#𝑑 𝑧(, 𝑧(

– 𝜆): hyperparameter
– 𝑑: a distance metric
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GEAR: Experiment
• Observations

– GEAR achieves comparable performance in utility metrics and other group fairness 
metrics

– GEAR achieves the best performance in graph counterfactual fairness measure
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Recap: Graph Convolutional Network (GCN)
• Key idea: iteratively performing neighborhood aggregation for node representation learning

• Formulation: graph convolution

𝐡*
4!% = 𝜎 𝐖 4 V

5∈𝒩C∪ *

𝑎*5𝐡5
4

– 𝐡/
( : the representation of node 𝑗 at 𝑙-th layer

– 𝐖 ( : weight parameters at 𝑙-th layer
– 𝑎2/ =

$
L.!$ L1!$

: weight of the edge between node 𝑖 w.r.t. node 𝑗

– 𝑑2, 𝑑/: degree of node 𝑖 and node 𝑗, respectively
– 𝒩2: neighborhood of node 𝑖
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[1] Kipf, T. N., & Welling, M.. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.



GCN Analysis: Error Rate vs. Node Degree
• Observation: low-degree nodes get higher error rate

• Questions
– Why is the correlation between error rate and degree bad?
– why should we concern about low-degree nodes?
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[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.



Degree Distributions of Real-world Graphs
• Degree distribution is often long-tailed

• GCN might
– Benefit a relatively small fraction of high-degree nodes
– Overlook a relatively large fraction of low-degree nodes
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GCN Limitations: Degree-related Bias 
• Key steps in GCN training

– Learn node representations by message passing 
– Train the model parameters by backpropagation

• Question #1: does GCN fail because of the message passing schema?
– Hypothesis #1: high-degree nodes have higher influence to affect the training of GCN 

on other nodes

• Question #2: does GCN fail during the backpropagation?
– Only information of labeled nodes can be backpropagated to its neighbors
– Hypothesis #2: high-degree nodes are more likely to connect with labeled nodes
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Hypothesis #1: Influence of High-Degree Nodes
• Given

– 𝒱jak6j67: a set of labeled nodes 𝒱jak6j67
– 𝐖 l : the weight of 𝐿-th layer in an 𝐿-layer GCN
– 𝑑*: degree of node 𝑖
– 𝐱*: input node feature of node 𝑖
– 𝐡*

l : output embeddings of node 𝑖 learned by the 𝐿-layer GCN
• Influence of node 𝒊 to node 𝒌

𝔼 𝜕𝐡G
¶ /𝜕𝐱k ∝ 𝑑G𝑑k𝐖 ¶

• Influence of node 𝒊 on GCN training
𝑆 𝑖 = l

k∈𝒱VWXYVYZ

𝔼 𝜕𝐡G
¶ /𝜕𝐱k ∝ 𝑑G 𝐖 ¶ l

k∈𝒱VWXYVYZ

𝑑k

• Remark
– For two nodes 𝑖 and 𝑗, if 𝑑* > 𝑑5, then 𝑆 𝑖 > 𝑆 𝑗

→ Node with higher degree will have higher influence on GCN training
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Hypothesis #1: Visualization of Node Influence
• Goal: visualize the influence score 𝑆 ⋅ for each node
• Observation: high-degree nodes have higher influence score

• Question #1: how to mitigate the impact of node degree?
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Hypothesis #2: Ratio of Labeled Neighbors
• Observation: high-degree nodes are more likely to have labeled neighbors

• Question #2: how to ensure enough training signals for low-degree nodes 
receive
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SL-DSGCN: Framework
• Strategy: pre-training + fine-tuning
• Pre-training

– Mitigate the impact of node degree by degree-specific GCN
– Pre-train

• A Bayesian neural network (BNN) with true labels for further use during fine-tuning
• An annotator through label propagation for pseudo-label generation
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Degree-specific Graph Convolutional Network (DSGCN)

• Key components
– A stack of degree-specific graph convolution layer for embedding learning
– A fully-connected layer for node classification

• Given: the settings of 𝑙-th graph convolution layer and 
– 𝑑G: the degree of node 𝑖
– 𝐖·[

� : the degree-specific weight w.r.t. degree of node 𝑗

• Degree-specific graph convolution layer

𝐡¡
¢!* = 𝜎 Y

£∈𝒩E∪ ¡

𝑎¡£ 𝐖 ¢ +𝐖ÄF
¢ 𝐡£

¢

• Question: how to generate the degree-specific weight?
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Degree-specific Weight Generation
• Hypothesis: existence of the complex relations among nodes with different degrees
• Method: weight generation with recurrent neural network (RNN)
• Given

– A RNN 
– 𝐖9

4 = degree-specific weight of degree 𝑘 at 𝑙-th layer

• Weight of degree 𝑘 + 1 at 𝑙-th layer is 𝐖k!3
� = RNN 𝐖k

�
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SL-DSGCN: Framework
• Strategy: pre-training + fine-tuning
• Fine-tuning

– Provide pseudo training signals to low-degree nodes for self-supervision
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Fine-Tuning with Self-Supervised Learning
• Student network: degree-specific GCN (DSGCN)
• Teacher network: Bayesian neural network (BNN)

– Provide additional softly-labeled set for self-supervision in student network

– Exponentially decay the learning rate of labeled and softly-labeled nodes 
by uncertainty score 
• Higher uncertainty score → smaller learning rate
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Nodes labeled identically by the pseudo-label annotator and BNN

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.



SL-DSGCN: Effectiveness Results
• Observations

– Increased label rate implies higher classification accuracy
– Self-supervision provides useful information (i.e., high accuracy when the label rate is 

low)
– SL-DSGCN outperforms all baseline methods
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SL-DSGCN: Fairness Results
• Observations: degree-wise classification accuracy

– SL-DSGCN > DSGNN > GCN for all degrees, especially low degrees
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Limitations: SL-DSGCN
• SL-DSGCN

– Degree-specific weight: learn degree-specific weights, generated by RNN
– Self-supervised learning: generate pseudo labels for additional training signals

• Limitation 1: additional number of weight parameters
– Weight parameters of RNN for degree-specific weight generation

• Limitation 2: change(s) to the GCN architecture
– Degree-specific weight generator
– Self-supervised learning module

• Question: how to mitigate degree-related unfairness without 
– Hurting the scalability of GCN
– Changing the GCN architecture?

153

High cost of 
computational 
resources

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.



Fairness = Just Allocation of Utility
• Intuition: utility = resource to allocate
• Expected result: similar utility (accuracy) for all nodes regardless of their 

degrees

• Question: how to define such fairness?
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Recap: Rawlsian Difference Principle
• Origin: distributive justice
• Goal: fairness as just allocation of social welfare

-- John Rawls, 1971    

• Intuition: treat utility of GCN as welfare to allocate
– Least fortunate group → group with the smallest utility
– Example: classification accuracy for node classification
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“Inequalities are permissible when they maximize […] the 
long-term expectations of the least fortunate group.”

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.

• Justice as fairness
• Justice is a virtue of instituitions
• Free persons enjoy and acknowledge the rules

• Well-ordered society
• Designed to advance the good of its members
• Regulated by a public conception of justice



RawlsGCN: Problem Definition
• Given

– 𝒢 = 𝐀, 𝐗 : an undirected graph
– 𝛉: weights of an 𝐿-layer GCN
– 𝐽: a task-specific loss

• Find: a well-trained GCN that
– Minimizes the task-specific loss
– Achieves a fair allocation of utility for the groups of nodes with the same degree

• Key question: when is the allocation of utility fair?
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RawlsGCN: Fair Allocation of Utility
• Key idea: consider the stability of the Rawlsian difference principle
• How to achieve the stability?

– Keep improving the utility of the least fortunate group

• When do we achieve the stability? 
– No least fortunate group
– All groups have the balanced utility

• Challenge: non-differentiable utility
– Workaround: use loss function as the proxy of utility
– Rationale: minimize loss in order to maximize utility

• Goal: fair allocation of utility → balanced loss
• Question: why does the loss vary after training the GCN?
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RawlsGCN: Source of Unfairness
• Intuition: understand why the loss varies after training

• What happens during training?
– Extract node representations and make predictions
– Calculate the task-specific loss 𝐽
– Update model weights 𝛉 by the gradient MN

M𝛉
← key component for training

• Question: is the unfairness caused by the gradient?
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RawlsGCN: Gradient of Model Weights
• Given

– An undirected graph 𝒢 = 𝐀, 𝐗 with �𝐀 = |𝐃"
\
](𝐀 + 𝐈)|𝐃"

\
]

– An arbitrary 𝑙-th graph convolution layer
• Weight matrix 𝐖 4

• Hidden representations before activation 𝐄 4 = �𝐀𝐇 4"% 𝐖 4

– A task-specific loss 𝐽

• The gradient of 𝑱 w.r.t. 𝐖 𝒍

𝜕𝐽
𝜕𝐖 ¢ = 𝐇 ¢"* 9�𝐀9

𝜕𝐽
𝜕𝐄 ¢
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RawlsGCN: Unfairness in Gradient
• Gradient of loss w.r.t. weight

𝜕𝐽
𝜕𝐖 4 =V

*$%

I

𝑑]𝐀 𝑖 𝕀*
mnj =V

5$%

I

𝑑]𝐀 𝑗 𝕀5
cno

– 𝕀%
OPQ = 𝔼)~𝒩 ( 𝐇 )R( 𝑗, :

# ST
S𝐄 0 %,:

– 𝕀;
XPY = 𝐇 )R( 𝑗, :

#
𝔼%~𝒩 ;

ST
S𝐄 0 %,:

• Intuitions
– 𝕀2

PQR and 𝕀/
SQT → The directions for gradient descent

– 𝑑U𝐀 𝑖 and 𝑑U𝐀 𝑗 → The importance of the direction

• Higher degree → more focus on that direction

• Symmetric normalization in �𝐀
– Normalize the largest eigenvalue, not degree
– High degree in A → high degree in »𝐀

• Solution: doubly stochastic matrix �𝐀pq
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Sampling from 𝑗-th neighborhood

Column sum of 𝑖-th column
Row sum of 𝑗-th row

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.



RawlsGCN: Doubly Stochastic Matrix Computation

• How to mitigate unfairness in ÌÍ
Ì𝐖 G ?

– Intuition: enforce row sum and column sum of �𝐀 to be 1 
– Solution: doubly stochastic normalization on �𝐀

• Method: Sinkhorn-Knopp algorithm
– Key idea: iteratively normalize the row and column of a matrix
– Complexity: linear time and space complexity
– Convergence: always converge iff. the matrix has total support

• Existence for GCN: the Sinkhorn-Knopp algorithm always finds the unique 
doubly stochastic form �𝐀ÎÏ of �𝐀

– �𝐀 = |𝐃"
\
](𝐀 + 𝐈)|𝐃"

\
]

– |𝐃 = degree matrix of 𝐀 + 𝐈 for a graph 𝐀
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RawlsGCN: A Family of Debiasing Methods
• Gradient computation

𝜕𝐽
𝜕𝐖 ¢ ¯°¦±

= 𝐇 ¢"* 9�𝐀ÎÏ9
𝜕𝐽
𝜕𝐄 ¢

– Key term: �𝐀¼b – doubly-stochastic normalization of �𝐀
• Proposed methods

– RawlsGCN-Graph: during data pre-processing, compute �𝐀¼b and treat it as the input of 
GCN

– RawlsGCN-Grad: during optimization (in-processing), treat �𝐀¼b as a normalizer to 
equalize the importance of node influence
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RawlsGCN-Graph: Pre-processing
• Intuition: normalize the input renormalized graph Laplacian into a doubly 

stochastic matrix
• Key steps

1. Precompute the renormalized graph Laplacian �𝐀
2. Precompute �𝐀¼b by applying the Sinkhorn-Knopp algorithm
3. Input �𝐀¼b and 𝐗 (node features) to GCN for training 
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RawlsGCN-Grad: In-processing
• Intuition: equalize the importance of node influence in gradient computation

• Key steps
1. Precompute the renormalized graph Laplacian »𝐀
2. Input »𝐀 and 𝐗 (node features) to GCN
3. Compute »𝐀WX by applying the Sinkhorn-Knopp algorithm
4. Repeat until maximum number of training epochs

• Compute the fair gradient ST
S𝐖 0 [\]X

= 𝐇 )R( #z𝐀^_#
ST
S𝐄 0 using z𝐀^_

• Update 𝐖 ) by the fair gradient ST
S𝐖 0 [\]X
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RawlsGCN: Effectiveness Results
• Observations

– RawlsGCN achieves the smallest bias
– Classification accuracy can be improved 

• Mitigating the bias → higher accuracy for low-degree nodes → higher overall accuracy
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RawlsGCN: Efficiency Results
• Observation: RawlsGCN has the best efficiency compared with other baseline 

methods
– Same number of parameters and memory usage (in MB) with GCN
– Much shorter training time (in seconds)
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Related Problem #1: Explainability
• Motivation: how to provide human understandable explanation to a 

particular prediction?
• Goal: explain model prediction to non-expert end users
• Example: loan approval

• Related work: GNNExplainer, PGM-Explainer, SubgraphX
• Relationship to fairness: explainability helps interpret whether a model uses 

biased information for prediction to end users
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graph mining 
algorithm

Approved Not Approved

[1] Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J.. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurIPS 2019.
[2] Vu, M. N., & Thai, M. T.. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. NeurIPS 2020.
[3] Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S.. On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.

Explanation:
High historical 
default rate



Related Problem #2: Accountability
• Motivation: how do mining results relate to graph topology?
• Goal: find influential elements w.r.t. the graph mining results
• Example: loan approval

• Related work: AURORA, N2N, NEAR
• Relationship to fairness: accountability helps determine to what extent a 

sensitive attribute influences the graph mining results
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Why does it 
make mistakes?

graph mining 
algorithm

Approved Not Approved

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
[2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
[3] Wang, Y., Yao, Y., Tong, H., Xu, F., & Lu, J.. Auditing Network Embedding: An Edge Influence based Approach. TKDE 2021.



Related Problem #3: Robustness
• Motivation: why do mining results sensitive to malicious manipulations?
• Goals

– Attack: fool the mining model by a few manipulations on the input graph
– Defense: defend the mining model against the malicious manipulations

• Example: loan approval

• Related work: Nettack, Mettack, GNN-SVD
• Relationship to fairness: malicious users can 

– Manipulate the private sensitive information of other users
– Attack the model to make a fair mining model biased
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[1] Zügner, D., Akbarnejad, A., & Günnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.
[2] Zügner, D., & Günnemann, S.. Adversarial Attacks on Graph Neural Networks via Meta Learning. ICLR 2019.
[3] Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E.. All You Need is Low (Rank): Defending Against Adversarial Attacks on Graphs. WSDM 2020.
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the model to make wrong 
predictions

graph mining 
algorithm
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Related Problem #4: Privacy Preservation
• Motivation: why can we infer private information by data analysis?
• Goal: prevent the data or mining model from leaking private information
• Example

• Related work: Tλ, dK-graph, VFGNN
• Relationship to fairness: preserving privacy on sensitive information may help 

ensure fairness

171

• AOL releases anonymized 
search logs of 650k users

• People find out the identity 
of one searcher using her 
search logs in a few days

[1] Ding, X., Zhang, X., Bao, Z., & Jin, H.. Privacy-Preserving Triangle Counting in Large Graphs. CIKM 2018.
[2] Wang, Y., & Wu, X.. Preserving Differential Privacy in Degree-Correlation based Graph Generation. TDP 2013.
[3] Zhou, J., Chen, C., Zheng, L., Wu, H., Wu, J., Zheng, X., ... & Wang, L.. Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification. arXiv 2020.
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Related Problem #1: Explainability
• Observation: graph neural network (GNN) is not transparent to end users

– Complex neighborhood aggregation + feature transformation
– Nonlinear activation

• Question: can we explain why GNN makes a certain prediction to node?
• Representative solution: GNNExplainer
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GNNExplainer: Overview
• Intuition: find the most informative subgraph and subset of node features 

w.r.t. a node’s prediction
– Reason: GNN use feature and local subgraph to learn node representations

• Computation graph: a subgraph with all information about making a 
prediction
• Example: 2-layer GCN

174

2 3

4
0

1
4

30

3 41 2 40

Input graph Computation graph

Layer 1

Layer 2
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GNNExplainer: Solution
• Optimization problem

max
\`,𝐗`

𝑀𝐼 𝐘 𝑖, : , 𝐺#, 𝐗# = 𝐻 𝐘 𝑖, : − 𝐻 𝐘 𝑖, : 𝐺 = 𝐺#, 𝐗 = 𝐗#
– 𝐘 𝑖, : : model prediction for node 𝑖
– 𝐺): node 𝑖’s sub-computation graph
– 𝐗): node 𝑖’s subset of node features
– 𝐻 𝐘 𝑖, : : constant, entropy of model prediction
– 𝐻 𝐘 𝑖, : 𝐺 = 𝐺), 𝐗 = 𝐗) : conditional entropy given the input subgraph and features

• Surrogate problem
min
𝐌,𝐅

𝐻 𝐘 𝑖, : 𝐀 = 𝐀V⊙𝜎 𝐌 ,𝐗 = 𝐙 + (𝐗V − 𝐙)⊙ 𝐅
– 𝑛: number of nodes
– 𝑑: number of features
– 𝜎: sigmoid function 
– 𝐀a: adjacency matrix of computation graph
– 𝐗a: node feature matrix of computation graph
– 𝐌 ∈ ℝ,×,, 𝐅 ∈ 0,1 ,×c: mask matrices
– 𝐙: random variable sampled from empirical distribution
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Related Problem #2: Accountability
• Motivation: how do mining results relate to graph topology?
• Goal: find influential elements w.r.t. the graph mining results
• Example: loan approval
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What is the cause 
of this prediction?

graph mining 
algorithm

Approved Not Approved

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
[2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.



N2N: Formulation
• N2N: network 𝐀 to derivative network 𝐁
• Intuition: influential → high impact if perturbed
• Edge influence: derivative of 𝑓(𝐘∗) w.r.t. the edge

𝐁 𝑖, 𝑗 =
d𝑓(𝐘∗)
d𝐀 𝑖, 𝑗

• Derivative network

• Question: how to efficiently calculate the partial derivative?
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s. t. 𝐘∗ = argminY𝐿(𝐀, 𝐘, 𝜃)

𝐁 =
d𝑓(𝐘∗)
d𝐀 =

𝜕𝑓(𝐘∗)
𝜕𝐀 +

𝜕𝑓 𝐘∗

𝜕𝐀

%

− diag
𝜕𝑓 𝐘∗

𝜕𝐀 ,

𝜕𝑓(𝐘∗)
𝜕𝐀 ,

if undirected

if directed

key component to calculate 

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
[2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.



Instantiation #1: PageRank
• Basics of PageRank

– Goal: importance of nodes = probability a random walker land on the nodes
– Mining results: 𝐘∗ = 𝐫 = 1 − 𝑐 𝐐𝐞

• 𝐐 = 𝐈 − 𝑐𝐀 "$

• N2N for PageRank
– 𝒇() function: 𝑓(𝐘∗) = 𝐫 &

&

– Partial derivative
𝜕𝑓(𝐘∗)
𝜕𝐀

= 2𝑐𝐐#𝐫𝐫#

– Time Complexity: 𝑂 𝑚 ; space complexity: 𝑂 𝑚 + 𝑛
• 𝑚 = number of edges
• 𝑛 = number of nodes

– Remark
• N2N for PageRank is submodular
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×

=

2𝑐𝐐%𝐫 𝐫%

𝜕𝑓(𝐘∗)
𝜕𝐀

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.



Instantiation #2: HITS
• Basics of HITS

– Goal: importance of nodes = (hub scores 𝐮, authority scores 𝐯)
– Mining results: solve by rank-1 SVD

• 𝐮 = first left singular vector of 𝐀 = principal eigenvector of 𝐀𝐀%

• 𝐯 = first right singular vector of 𝐀 = principal eigenvector of 𝐀%𝐀

• N2N for HITS
– 𝒇() function: 𝑓 𝐘∗ = 𝜆% − 𝜆&

• 𝜆( and 𝜆7 are the first and second largest eigenvalue of 𝐀#𝐀
– Partial derivative

𝜕𝑓(𝐘∗)
𝜕𝐀 = 2 𝐮𝟏 𝐮𝟏%𝐀 − 𝐮𝟐 𝐮𝟐%𝐀 = 2(𝐮𝟏𝛿$𝐯𝟏% − 𝐮𝟐𝛿#𝐯𝟐%)

– Time Complexity: 𝑂 𝑚 + 𝑛 ; space complexity: 𝑂 𝑚 + 𝑛
• 𝑚 = number of edges
• 𝑛 = number of nodes
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rank-2 SVD on 𝐀
• 𝛿%: largest singular 

value
• 𝛿&: second largest 

singular value

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.



Instantiation #3: Spectral Clustering
• Basics of spectral clustering

– Goal: find 𝑘 clusters such that 

– Mining results: 𝐘∗ = 𝐔 = eigenvectors of with 𝑘 smallest eigenvalues

• N2N for spectral clustering
– 𝒇() function: 𝑓 𝐘∗ = Tr(𝐔'𝐋𝐔)
– Partial derivative

𝜕𝑓(𝐘∗)
𝜕𝐀 = diag 𝐔𝐔# 𝟏,×, − 𝐔𝐔#

– Time Complexity: 𝑂 𝑘 𝑚 + 𝑛 + 𝑘&𝑛 ; space complexity: 𝑂 𝑘𝑛 +𝑚
• 𝑚 = number of edges
• 𝑛 = number of nodes
• 𝑘 = number of clusters
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-( )=
𝜕𝑓(𝐘∗)
𝜕𝐀 𝑖, 𝑗

𝜕𝑓(𝐘∗)
𝜕𝐀

𝐔 𝐔# 𝐔#

𝐮;𝐮%#
𝐮%

maximize intra-connectivity 

minimize inter-connectivity 

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.



Instantiation #4: Matrix Completion
• Basics of matrix completion

– Goal: learn low-rank matrices for 𝑛4 users and 𝑛e items 
– Optimization problem

• Ω = {observations}, 𝜆2, 𝜆2 for regularization

• N2N for matrix completion
– 𝒇() function: 𝑓 𝐘∗ = 𝐔𝐕Q g

e

– Element-wise solution
𝜕𝑓(𝐘∗)
𝜕𝐀 𝑖, 𝑗 = 2𝐔 𝑖, : 𝐕#𝐕𝐂%R(𝐕 𝑗, : # + 2𝐕 𝑗, : 𝐔#𝐔𝐃;R(𝐔 𝑖, : #

• Given mining results 𝐔 and 𝐕, precompute 𝐔Q𝐔, 𝐕Q𝐕, 𝐂N and 𝐃h during optimization
– Amortized time complexity: O(𝑘� 𝑛$ + 𝑛# + 𝑘#𝑚); space complexity: O(𝑘#(𝑛$ + 𝑛#) + 𝑚)

• 𝑚 = number of edges
• 𝑛4 = number of users
• 𝑛e = number of items
• 𝑘 = dimension of latent factors
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min
𝐔,𝐕

proj^ 𝐀 − 𝐔𝐕% _
# + 𝜆3 𝐔 _

# + 𝜆` 𝐕 _
#

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
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Related Problem #3: Robustness
• Observation: neural networks are sensitive to random perturbation

– GNN, as a type of neural networks, makes no exception
• Questions

– How to attack GNN so it makes bad predictions?
– How to defend against such adversarial attacks?
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[1] Goodfellow, I. J., Shlens, J., & Szegedy, C.. Explaining and Harnessing Adversarial Examples. ICLR 2015.
[2] Zügner, D., Akbarnejad, A., & Günnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.
[3] Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E.. All You Need is Low (Rank): Defending Against Adversarial Attacks on Graphs. WSDM 2020.



Attacking GNN: Nettack
• Goal: attack GNN with unnoticeable perturbation on graph and features
• Optimization problem

argmax
𝐀D,𝐗D

max
½Â½STU

log 𝐙 𝑢, 𝑐 − log 𝐙 𝑢, 𝑐Ú§Û
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[1] Zügner, D., Akbarnejad, A., & Günnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.

s. t. 𝛉∗ = argmin
𝛉

𝐿 𝐀Ü, 𝐗Ü, 𝛉
𝐙 = GCN 𝐀Ü, 𝐗Ü, 𝛉∗

𝐀Ü, 𝐗Ü ≈ (𝐀, 𝐗)
𝐀 − 𝐀Ü Ý + 𝐗 − 𝐗Ü Ý ≤ Δ

Maximize the classification 
loss of a target node

Measure impact after GCN re-
training
* For evasion attack, 𝛉 is fixed

Unnoticeable attack

Budgeted attack
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Defending GNN: GNN-SVD
• Motivation: GNN is vulnerable to adversarial attack

– How to make GNN more robust?

• Observation: Nettack is a high-rank attack
– High-rank spectrum (i.e., small singular values) will change after attack

• Key idea: low-rank approximation can resist such attack

• Steps
– Take a truncated SVD of the input graph structure
– Reconstruct the graph with top-𝑘 singular values and their singular vectors
– Output the reconstructed graph as vaccinated graph
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[1] Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E.. All You Need is Low (Rank): Defending Against Adversarial Attacks on Graphs. WSDM 2020.
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Fairness on Dynamic Graphs
• Motivation: networks are dynamically changing over time

– New nodes: new accounts on social network platforms (e.g., Facebook, Twitter) 
– New edges: new engagements among people on social networks (e.g., follow, retweet) 

• Trivial solution: re-run the fair graph mining algorithm from scratch at each timestamp
• Limitations

– Time-consuming to re-train the mining model
– Fail to capture the dynamic fairness-related information
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• Questions
– How to efficiently update the mining results and 

ensure the fairness at each timestamp?
– How to characterize the impact of dynamics over the 

bias measure?



Fairness on Dynamic Graphs
• Possible method: fair graph mining model with time-dependency learning module

– Efficient update: dynamic tracking module
– Temporal information learning: gated recurrent unit (GRU)
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t=0 t=1 t=2

New node 

New edge

Fair
GNN

Fair
GNN

Fair
GNN

training training traininginputinput
Time-dependency 

learning 
Time-dependency 

learning 

New edge



Benchmark and Evaluation Metrics
• Motivation: there is no consensus on the experimental settings for fair graph 

mining
– Which graph(s) we should use for fair graph mining?
– What could be the sensitive attribute(s) for each dataset to be used?
– What should be the evaluation metric for each type of fairness on graphs?
– How to split the dataset for training, validation and test?

• Consequences
– Different settings for different research works
– Hardly fair comparison among debiasing methods

• Call: the community should work together toward 
– A consensus on the experimental settings
– A benchmark for fair comparison of different methods
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Fairness vs. Other Social Aspects
• Overview: trustworthy graph mining

• Motivation: tensions among the social aspects
• Fairness vs. privacy

– Is fairness related to privacy preservation on graphs?
– Will preserving privacy help ensuring fairness, or vice versa?
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[1] Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., & Pei, J.. Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv.
[2] Dai, E., Zhao, T., Zhu, H., Xu, J., Guo, Z., Liu, H., ... & Wang, S.. A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness,
and Explainability. arXiv.

Trustworthy Graph Mining



Fairness vs. Explainability
• Research questions

– Are the existing debiasing methods transparent?
– If not, can we open the black box of debiasing methods on graphs?

• Example: loan approval
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graph mining 
algorithm

Approved Not Approved

Explanation:
(1) High historical default rate
(2) Decision independent to gender

Explanation:
(1) Low credit history
(2) Decision independent to gender

Fair and transparent result
• Fair: equal true positive rate
• Transparent: explanation on the usage of sensitive 

information

: truth = approved

: truth = not approved

: male

: female



Fairness vs. Robustness
• Research questions

– Will existing adversarial attack strategies affect the fairness of mining model?
– Are the existing debiasing methods robust against random noise and adversary?

• Example: loan approval
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graph mining 
algorithm

Approved Not Approved

Fair and robust result
• Fair: equal true positive rate
• Robust: high accuracy: truth = approved : truth = not approved

: male : female : malicious user



Takeaways
• Introduction to algorithmic fairness on graphs

– Background, challenges, related problems
• Group fairness on graphs

– Classic graph mining: ranking, clustering
– Advanced graph mining: node embedding, graph neural networks

• Individual fairness on graphs
– Laplacian regularization-based method, ranking-based method

• Other fairness on graphs
– Counterfactual fairness, degree fairness

• Beyond fairness on graphs
– Explainability, accountability, robustness

• Future directions
– Fairness on dynamic graphs
– Benchmark and evaluation metrics for algorithmic fairness on graphs
– Interplay between fairness and other aspects of trustworthiness
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Resources
• Datasets: https://github.com/yushundong/Graph-Mining-Fairness-Data
• Surveys

– Zhang, W., Weiss, J. C., Zhou, S., & Walsh, T.. Fairness Amidst Non-IID Graph Data: A Literature 
Review. arXiv preprint arXiv:2202.07170.

– Dong, Y., Ma, J., Chen, C., & Li, J.. Fairness in Graph Mining: A Survey. arXiv preprint arXiv:2204.09888.
– Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., & Pei, J.. Trustworthy Graph Neural Networks: Aspects, 

Methods and Trends. arXiv preprint arXiv:2205.07424.
– Dai, E., Zhao, T., Zhu, H., Xu, J., Guo, Z., Liu, H., ... & Wang, S.. A Comprehensive Survey on Trustworthy 

Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. arXiv preprint 
arXiv:2204.08570.

• Related tutorials
– Fair Graph Mining

• http://jiank2.web.illinois.edu/tutorial/cikm21/fair_graph_mining.html
– Fairness in Networks

• https://algofairness.github.io/kdd-2021-network-fairness-tutorial/
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