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The Ubiquity of Graphs

Road network | Brain network

This Tutorial: Graphs = Networks




Graph Mining: Applications

Credit scoring
oy

Computational bioinformatics

bef
®

Z

‘ i . SYNTHETIC
ACCOUNT
UNSECURED RERSONi
CREDIT LOAN
CARD
SYNTHETIC

PERSON 2 n
D ACCOUNT
HOLDER 1

PHONE

NUMBER SSN 1

PHONE
‘ NUMBER
ACCOUNT

ADDRESS ACCOUNT
l HOLDER 2 I l HOLDER 3 I
CREDIT B UNSECURED
LOAN

SSN 2

BANK ANK
CARD ACCOUNT ACCOUNT

Financial fraud detection

SMART CITY

[1] Xu, X., Zhou, C., & Wang, Z.. Credit Scoring Algorithm based on Link Analysis Ranking with Support Vector Machine. ESWA 2009.

[2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H.. Hidden: Hierarchical Dense Subgraph Detection with Application to Financial Fraud Detection.
SDM 2017.

[3] Luo, S., Shi, C., Xu, M., & Tang, J.. Predicting Molecular Conformation via Dynamic Graph Score Matching. NeurlPS 2021.
[4] Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., ... & Yu, J.. Traffic Flow Prediction via Spatial Temporal Graph Neural Network. WWW 2020.



Graph Mining: How To Z‘IDLH!
* A pipeline of graph mining

Input graph Mining model Mining results
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Graph Mining: Who & What

* Who are in the same online community?

* Who is the key to bridge two academic areas?

e Who is the master criminal mind?
 Who started a misinformation campaign?

* Which gene is most relevant to a given disease?

* Which tweet is likely to go viral?
* Which transaction looks suspicious?

* Which items shall we recommend to a user?
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Graph Mining: Why and How f{ml

* How to ensure algorithmic fairness on graphs?
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* How do fake reviews skew the recommendation results?
* How do the mining results relate to the input graph topology?

* Why are two seemingly different users in the same community?

* Why is a particular tweet more likely to go viral than another?
* Why does the algorithm ‘think” a transaction looks suspicious?



Algorithmic Fairness in Machine Learning

* Motivation
— No data and/or model are perfect
— Model trained on data could systematically harm a group of people

e Goals: (1) understand and (2) correct the bias(es)
* Examples: bias in machine learning systems
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can (and can't) tell us about Al bias

A striking image that only hints at a much bigger problem
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[1] https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias
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Algorithmic Fairness on Graphs

 Example: loan approval

o male g %
g: female / 0

Node classification
algorithm

Y

* Question: how to ensure algorithmic fairness on graphs?

[1] http://tonghanghang.org/netfair.htm
E [2] http://jiank2.web.illinois.edu/tutorial/cikm21/fair_graph_mining.html
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http://tonghanghang.org/netfair.html

Algorithmic Fairness: Definition e

* Principle: lack of favoritism from one side or another
* Definitions of algorithmic fairness

G ro u p fa i r n eSS Approved Not Approved Approved Not Approved Input Space ( ) Output Space
 Statistical parity 28 x ?/ \*M(x)
: : td
* Equal opportunity B dy(6y) i 3 M6 MB))

I M(y)
* Equalized odds Y é M /
q Accurate but not fair Fair but not accurate p( )
[ ]

— Individual fairness
— Counterfactual fairness
— Difference principle

John Rawls

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.
[2] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NeurlPS 2016.

[3] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.
[4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurlPS 2017.
[5] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.




Group Fairness: Statistical Parity f{lnm!

* Definition: equal acceptance rate
Pro(y =c)=Pr_(y =c)
— y: model prediction
— Pr_.: probability for the protected group
— Pr_: probability for the unprotected group
— Also known as demographic parity, disparate impact

 Example: loan approval

Approved Not Approved
S YN
g: Node classification \/ v Prz(Jj = approved) = 2/3
algorithm 2 2 9 Prg(y = approved) = 2/3
- e Fair result
g g Same approval rate for

male and female

:
:

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.




Group Fairness: Equal Opportunity [yl

* Definition: equal true positive rate
Pry(=cly=c)=Pr_(¥ =cly =c)

If hold for all classes, it

— y: true label
is called equalized odds

— ¥: model prediction
— Pr,: probability for the protected group
— Pr_: probability for the unprotected group

* Example: loan approval Approved Not Approved
27 E
N v Prs (9 = approved|a) = 1
Pra(y = approved| &) = 1

graph mining
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[1] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NeurlPS 2016.
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Individual Fairness

* Definition: similar individuals should have similar outcomes

* Formulation: Lipschitz inequality (most common)
d, (M(x), M(y)) < Ld,(x,y)
— M: a mapping from input to output
— d: distance metric for output
— d,: distance metric for input

— L: a constant scalar Input Space Output Space
 Example MO\
T )
d,(x, ) g dl(M(x);M(Y))
) .' O M(y)
)

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.
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Counterfactual Fairness

counterfactual version M‘n

* Definition: same outcomes for|‘different versions’|of the same candidate
Pr()?5=51 =cCls =5, x = x) = Pr(fls=52 =cCls =5,,x = x)

- Pr()?5=51 =cCls =51, x = x): version 1 of x with sensitive demographic s

- Pr()?5=52 =Cls =5,,x = x): version 2 of X with sensitive demographic s,

e Example: causal graph of loan approval

[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurlPS 2017.
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Rawlsian Difference Principle Yot

* Origin: distributive justice
e Goal: fairness as just allocation of social welfare

“Inequalities are permissible when they maximize [...] the
long-term expectations of the least fortunate group.”

-- John Rawls, 1971

* Formulation: max-min problem
— Min: the least fortunate group with smallest welfare/utility
— Max: maximization of the corresponding utility

* Also known as max-min fairness, accuracy disparity

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.
E * Justice as fairness » Well-ordered society

* Justice is a virtue of instituitions * Designed to advance the good of its members
* Free persons enjoy and acknowledge the rules * Regulated by a public conception of justice




Challenge #1: Theoretical Challenge

* Assumption

Classic machine learning Graph mining
Data lID samples Non-IID graph
— 1ID: independent and identically distributed
 Example -~ -
g ‘ * Individuals are g — ‘ * Individuals are
- independent / o~ connected
@ - ® )
D D
- e Cannot affect - e Can affect others
% [ others 2 @ / through connection(s)
ah o ah o
Classic machine learning Graph mining

e Challenges: implication of non-IID nature on
— Measuring bias
* Dyadic fairness, degree-related fairness
— Mitigating unfairness
e Enforce fairness by graph structure imputation

i
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Challenge #2: Algorithmic Challenge [yl

* Dilemma: utility vs. fairness

 Example: loan approval

e .« po . @ %-male 51 g-female
— Utility = classification accuracy ") a
A
— Fairness = statistical parity - -ﬂ +truth = approved %g:tr“th”"tappme‘j
Approved Not Approved Approved Not Approved

aal AA - AA
= ) -yl

Nl Nl

Accurate but not fair Fair but not accurate
 Questions Z

— Can we improve fairness at no cost of utility?
— If not, how to balance the trade-off between utility and fairness?
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Overview of Part | DA

Group Fairness on Graphs

l l l

Ranking Clustering Embedding
_ [ Fair Spectral Clustering ] ( Fairwalk \
( CrossWalk \
( Compositional Fairness \
( FairGNN \




Preliminary: PageRank [yt

* Assumption: important webpage - linked by many others

* Formulation

— Iterative method for the following linear system
r=cA'r+ (1 -c)e

A: transition matrix

r: PageRank vector

e ¢: damping factor

e: teleportation vector

— Closed-form solution

r=(1-c)(I-cA") e

e Variants

— Personalized PageRank (PPR)
— Random Walk with Restart (RWR)

[1] Page, L., Brin, S., Motwani, R., & Winograd, T.. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab 1999.
[2] Haveliwala, T. H.. Topic-sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. TKDE 2003.

[3] Tong, H., Faloutsos, C., & Pan, J. Y.. Fast Random Walk with Restart and Its Applications. ICDM 2006.




Unfairness in PageRank et

e PageRank score: a measure of node importance in the network

* Facts: some nodes hold more important/central positions in the network

— biased academic ranking w.r.t. gender - underestimation of scientific contribution by
female

 Example
— Network:
— Groups: r¢
— Red node
e ~48% 0
* “33% 0

Unfair ranking | % ‘
Similar number of red nodes vs. blue nodes (48% red vs. 52% blue) e R

Much less PageRank mass of red nodes (33% red vs. 67% blue)

1. How to define group fairness for PageRank?
2. Can we enforce group fairness on PageRank?

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.




Fairness Measure: ¢-Fairness Yot

Given: (1) a graph G; (2) a parameter ¢

Definition: a PageRank vector is ¢-fair if at least ¢ fraction of total PageRank mass is
allocated to the protected group

Variants and generalizations
— Statistical parity > ¢ = fraction of protected group
— Affirmative action - ¢ = a desired ratio (e.g., 20%)

 Example
— Protected group = red nodes
—¢p=1/3
$=1/ Q| o6 @ |oss
blue nodes«[ Not ¢-fair! blue nodes«[ ¢-fair!
Q|07 0.5 1 QO | 06 0.6 1
06+07+05 3 0.45+0.6+ 06 3
red nodes — ' 0.5 red nodes — ‘ 06

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.




Problem Definition: Fair PageRank f{m!

* Given
— A graph with transition matrix A

— Partitions of nodes
* Red nodes (R): protected group
* Blue nodes (B): unprotected group

* Find: a fair PageRank vector r that is
— ¢-fair
— Close to the original PageRank vector r




Fair PageRank: Solutions im!

* Recap: closed-form solution for PageRank
r=(1-c)I-cAT) e
* Parameters in PageRank
—Damping factor ¢ avoids sinks in the random walk (i.e., nodes without
outgoing links)
—Teleportation vector e controls the starting node where a random walker

restarts
 Can we control where the walker teleports to? ~— Solution #1: fairness-sensitive PageRank

—Transition matrix A controls the next step where the walker goes to
* Can we modify the transition probabilities?
* Can we modify the graph structure?

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.

i




Solution #1: Fairness-sensitive PageRank

* Intuition
— Find a teleportation vector e to make PageRank vector ¢-fair
— Keep transition matrix A and Q7 = (1 — ¢)(I — cAT) 1 fixed
* Observation: mass of PageRank r w.r.t. red nodes R
r(R) =Q'[R,:]e

— QT[R,:]: rows of QT w.r.t. nodes in set R

° (Convex) Optimization prOblem The fair PageRank QT e is as close as
min ” QTe _ r”2 possible to the original PageRank r
S_et_ e[i] (= [O, 1]’ Vi| The teleportation vector e is a
le|l,= 1 probability distribution
”QT [R,: ]e”1= ¢ The fair PageRank Q" e

o needs to be ¢-fair
— Can be solved by any convex optimization solvers

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
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Fairness-sensitive PageRank: Example [nt

e Settings: ¢ = 1/3 and protected node = red node

* Original PageRank Q' e
@|08|07 |03 1/3 0.6
rows w.r.t. Not ¢—fair!
bluenodes | @107 | 09 | 05 1/3| r=Q'e=|07 05 _1
0.6 +0.7+05 3
row w.r.t.
ednodes — @103 | 05 | 07 1/3 0.5
* Fairness-sensitive PageRank Q" &
@ |08|07]|03 1/6 0.45
rows w.r.t. ¢ fairl
bluenodes | @107 |09 |05 1/6| F=Q'&é=|o06 06 ,
FOW W.I.t. 045+ 06+06-3
—
ed nodes —~ @103 | 05 | 0.7 2/3 0.6

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.

i




Fairness-sensitive PageRank: Experiment [yt

* Observation: the teleportation vector allocates more weight to the red nodes,
especially nodes at the periphery of the network

— More likely to (1) restart at red nodes and (2) walk to other red nodes more often

PageRank ‘ Protected group Fairness-sensitive PageRank
A % ' Unprotected group ikl
P U RN S
,".-":t*-‘.-}‘. . A
e i
.‘ . —aal o 50,0 S Tugt i ..,_--"'-"4-‘._..-.’.-.' GRSy . .
S ettt ot s NOTE: size is proportional to
: ; ‘ LA 4 score in the teleportation
vector

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
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Fair PageRank: Solutions im!

* Recap: closed-form solution for PageRank
r=(1-c)I-cAT) e

* Parameters in PageRank

—Damping factor ¢ avoids sinks in the random walk (i.e., nodes without
outgoing links)
—Teleportation vector e controls the starting node where a random walker
restarts
e Can we control where the walker teleports to?
—Transition matrix A controls the next step where the walker goes to
* Can we modify the transition probabilities? «—— Solution #2: locally fair PageRank
* Can we modify the graph structure?

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.

i




Solution #2: Locally Fair PageRank Z‘m!

* Intuition: adjust the transition matrix A to obtain a fair random walk

* Neighborhood locally fair PageRank
—Key idea: jump with probability ¢ to red nodes and (1- ¢) to blue nodes

—Example
‘ Protected group 1/3
‘ Unprotected group X :‘ Locally Fair
1/3 (¢ =0.5)

1/3

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.

i



Solution #2: Locally Fair PageRank Z‘m!

* Residual locally fair PageRank
—Key idea: jump with
* Equal probability to 1-hop neighbors
» A residual probability 0 to the other red nodes
—Example

‘ Protected group
‘ Unprotected group Red 6
Nodes

1-6
§+——=1¢

* Residual allocation policies: neighborhood allocation, uniform
allocation, proportional allocation, optimized allocation

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
E * Neighborhood allocation: allocate the residual to protected neighbors, equivalent to neighborhood locally fair PageRank

* Uniform allocation: uniformly allocate the residual to all protected nodes
* Proportional allocation: allocated the residual to all protected nodes proportionally to their PageRank score
* Optimized allocation: allocate the residual to all protected nodes while minimizing the difference with original PageRank score




Locally Fair PageRank: Experiment e

* Observation: PageRank weight is shifted to the blue nodes at boundary

‘ Protected group Neighborhood Locally Fair PageRank

‘ Unprotected group " /‘s
‘, W2 /
/f#
i /

PageRank

4‘ < // S,
\‘ 2l /’/"7
',//‘7"/,4/ ~:'

;v-w-ﬂ,/,,. 7 / h. ,,'_ /
e i/ll.‘."‘/ 'l//’//"m,';/’ N/ X ] /
e

i»'

""n"

%
V/W»

441'/'/2 wJ// “’{'( ':"'

s,

Z I"‘??,{”%/ll if

) 9 VG
’7 NOTE: Size is proportional to

score in the PageRank vector
[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.
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Fair PageRank: Solutions im!

* Recap: closed-form solution for PageRank
r=(1-c)I-cAT) e
* Parameters in PageRank
—Damping factor ¢ avoids sinks in the random walk (i.e., nodes without
outgoing links)
—Teleportation vector e controls the starting node where a random walker

restarts
e Can we control where the walker teleports to?

—Transition matrix A controls the next step where the walker goes to
* Can we modify the transition probabilities?
e Can we modify the graph structure? <—— Solution #3: best fair edge identification

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.

i




Solution #3: Best Fair Edge Identification

* Intuition: add edges that can improve the PageRank fairness to the graph

* Example
— @ = protected node 0.257
- Not ¢-fair!
—¢=1/3 r= 0= | ouse g pfairt
0.257 + 0486 + 0.257 3
0.257
0.333
New edge to add F=Q"e=| 0333 qb-fa(irgl33 1
ew edage 1o 4 | B
0.333 0.333+4+0.3334+0.333 3

* Question: how to find the edges with the highest improvement?

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.

i
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Best Fair Edge Identification: Problem Definition Z‘IDEH!

* Given
-G =V,§&)
e &:edgeset
* P:node set
— 8 C V: protected node set
—pe(8) = X;ep pe(@): total PageRank mass of nodes in § on graph with edge set £

* Fairness gain of edge addition
gain(x; y) = Peu(x,y) (5) — P¢ (S)L Naive method

Exhaustively recompute

 Goal: find the edge (x,y),Vx,y € V, such that pageRank with the
ar(gm)ax gain(X, :V) addition of each node pair
X,y

* Question: how to efficiently compute the gain?

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.

i




Best Fair Edge Identification: Fairness Gain

* Main result: for a node x, the gain of adding a link to another node y
gain(x,y) = A(x, y)pe(x)

where A(x, y) has the form The ‘sensitivity’ of
target node y

The average ‘sensitivity’ of source
node x’s neighbors

(51~ 2 B resT0)

pe(Sly) — d. Yuen, Pe(S|w)

C
1—-c

Alx,y) =
C 1
degreeof — d, + 1—¢ <d Zu EN, pe(x|u) — pg(x|y)> +1
x N~

source node
Average proximity of node x’s neighbors to x
— ps(x|y): personalized PageRank (PPR) score of node x, with query node y, based on edge set €

— pe(S|y) = Xes pe(i|y): total PPR mass of nodes in §, with query node y, based on edge set £

pe(x) : node x should have high PageRank score

d,: node x should have small degree

pe(x|y) — di Y en, Pe(x|u): node y is close to node x

ps(S|y) — di Qo EN, ps(S|u): node y is more sensitive than the source node x’s neighborhood

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.

i

I




Best Fair Edge Identification: Experiment e

e Observation: the proposed method find the best edges to improve PageRank

fairness
- PA jC 4 ADA % n2v —A— Fairwak —@— RND

(7] (%]
éo.sm éoass
% 0.500 % 0.350

Baseline  04%0 L0
c € 0.340

Methods &% e
@ 0.470 o 0.335
%30460 %)0330
a - 01 2 3 456 7 8 910 o - 012 3 456 7 8 910

round round

ﬁ 0.58 § 0.44
C 056 c 042
‘T 0.54 O 0.40

Proposed ‘£ s, “% 028

Methods G 050 © 036
m .
o 048 D
a0 46 @ 034
(@]
o 012 3 45 6 7 8 910 o 012 3 45 6 7 8 910

round round
- FREC @ £ FRec @~ PREC E_PREC —$ n2v
Books Dataset Blogs Dataset

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P.. Link Recommendations for PageRank Fairness. WWW 2022.
E * FREC: select edge (x, y) with highest gain(x,y) = A(x, y)ps(x) * E_FREC: select edge (x, y) with highest gain(x, y)pacc(x, y)

* PREC: select edge (x, y) with highest gain(x, y | x) = A(x, y)pe(x|x) * E_PREC: select edge (x,y) with highest gain(x,y | x)pacc(x, ¥)
* Dacc (X, y): prediction probability by a logistic regression classifier on the existence of (x,y) using node2vec embeddings




Overview of Part | DA

Group Fairness on Graphs

l l l

Ranking Clustering Embedding
[ Fair PageRank ] _ ( Fairwalk \
( CrossWalk \
( Compositional Fairness \
( FairGNN \




Preliminary: Spectral Clustering (SC) e

maximize intra-connectivity

Goal: find k clusters such that

minimize inter-connectivity

Optimization problem __—~ Ratio cut

min | Tr (U'LU) s.t. UTU =1

where L is Laplacian matrix of A, U is a matrix with k orthonormal column vectors

Solution: rank-k eigen-decomposition
— U = eigenvectors with k smallest eigenvalues

/AN
* Example S /,\
All female IS(iIVId:;B - ' X‘O Unfair clustering
e / \ ‘ The clustering results are highly
n .
All male individuals are _»@\m correlated with gender
grouped together T~

[1] Ng, A. Y., Jordan, M. ., & WEeiss, Y.. On Spectral Clustering: Analysis and an Algorithm. NeurlPS 2002.
E [2] Shi, J., & Malik, J.. Normalized Cuts and Image Segmentation. TPAMI 2000.




Fairness Measure: Balance Score DA

Intuition: fairness as balance among clusters

Given: a node set I/ with
— h demographic groups: V =V, UV, ..UV,
— kclusters: V =C; UC, ...U Cy

Definition
Ve 0 G

_ . S
balance((C;) = ngl,lerbl] —|Vs/ A e [0, 1], vlie 1,2, ..,k]

Intuition: higher balance - fairer

— Each demographic group is presented with similar fractions as in the whole dataset for every cluster

A5
Example L UN balance(C,)

balance(C;) \_f- VNG |V NG,
BRI S A
Vo, N Cy|" Vy NGy
2'1 T | L& ’ /OH“‘N
|| |NoApy male group (- [R - (I. AT |>
- l,”> ARN'BD

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.

Vs
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Fair Spectral Clustering: Formulation [yl

* Key idea: fairness as linear constraint
— Given
* The spectral embedding U of n nodes in [ clusters (Cy, ..., C;)
* h demographic groups (Vy, ..., %)

— Define
« fO)[{] =1ifi € V, and 0 otherwise
 F = a matrix with f(8) — (“:l—ﬂ) 1,, (s€|[1,..,h—1]) as column vectors

— Observation: F'U = 0 < balanced clusters (i.e., fair clusters)
£ £2)  Fair fraction

* Example 0 05 | 05 0.5 |-0.5
0 05 |05 0.5 [ -0.5

1]0 05/05| __|05|05

0|1 05 |05 -0.5 | 0.5

V,: male group 0|1 0.5 | 0.5 05| 05

0|1 05 |05 -0.5 | 0.5

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Fair Spectral Clustering: Solution f{lnm!

* Optimization problem
min Tr (UTLU) s.t. UTU=ILFTU=0|

U “~
e Solution How to solve?
—Observation: F'U = 0 > U is in the null space of F'
—Steps
* Define Z = orthonormal basis of null space of FT
* Rewrite U = ZY
mUin Tr (YT'ZTLZY) s.t. Y'Y=I

—Method: rank-k eigen-decomposition on Z' LZ

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Fair Spectral Clustering: Correctness

* Given

I

— A random graph with nodes V by a variant of the Stochastic Block Model (SBM)
— Edge probability bertween two nodes i and j

a, { and j in same cluster and in same group
. b, { and j not in same cluster but in same group
P(i,j) =+ . . .
o { and j in same cluster but not in same group
Ld’ { and j not in same cluster and not in same group
,
forsomea >b>c>d 1

— A fair ground-truth clustering V. = C; U C,

01 CQ
e Example

Theorem: Fair SC recovers the ground-truth C|u5tering C'1 U CZ T \ AT

— Standard SCis likely to return V; U 15 -
— Fair SC will return C; U C,

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Fair Spectral Clustering: Experiment [yl

e Observation: Fairer (higher balance score) with similar ratio cut values for the
proposed method (Algorithm 1 in the figure)

FacebookNet --- gender

FriendshipNet --- gender

InDJoney

k DrugNet --- ethn'icity k

==== Balance of data set
— — Standard SC

@ 0.15[C~ "~ Algorithm 1 )
Q =
c PN
O of %
4°)

c
aa] (s

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Preliminary: Node Embedding [yl

* Motivation: learn low-dimensional node representations that preserve
structural/attributive information

* Applications

— Node classification Node clustering

— Link prediction o °° o i A
. [ .
— Node visualization S L., e 1/
® ® Mo -9
20 9
L
(zf,_f/‘; — Link prediction
(a) Input: Karate Graph (b) Output: Representation

Visualization of Node Embedding

[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. Deepwalk: Online Learning of Social Representations. KDD 2014.
[2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.

[3] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O.. Translating Embeddings for Modeling Multi-relational Data. NeurlIPS 2013.




Preliminary: Setup of Node Embedding [yt

* Two key components: pairwise scoring function + loss function
* Pairwise scoring function

— Suppose a node pair e = (u, v); z,, is embedding of u;

— Dot product: s(e) = s({z,,1,z,)) =zl z,

— TransE: s(e) = s((z,, 1,Z,) = —||z, + T — Z,]|5

* Pairwise loss function
— Suppose e; is i-th negative sample for node pair e = (u, v)

— Skip-gram loss .
Le(s(e),s(el‘), ...,S(e;,)) = — log[a(s(e))] - Z log[l - a(s(el-_))]
i=1

— Max-margin loss

Le(s(e),s(el_), ...,S(e,;)) = 2 max(1 + s(e) — s(e; ), 0)
i=1

[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. Deepwalk: Online Learning of Social Representations. KDD 2014.
[2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.

[3] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O.. Translating Embeddings for Modeling Multi-relational Data. NeurlIPS 2013.




Preliminary: Random Walk-based Node Embedding e

e Goal: learn node embeddings that are predictive of nodes in its neighborhood

* Key idea
— Simulate random walk as a sequence of nodes
— Apply skip-gram technique to predict the context node

 Example
— DeepWalk: random walk for sequence generation
— Node2vec: biased random walk for sequence generation

* Return parameter p: how fast the walk explores the neighborhood

of the starting node
* In-out parameter g: how fast the walk leaves the neighborhood

of the starting node

[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. Deepwalk: Online Learning of Social Representations. KDD 2014.
E [2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.




Fairness Measure: Statistical Parity Z‘lu;n!

e Statistical parity
— Given: (1) a sensitive attribute §; (2) multiple demographic groups QS partitioned by §
Extension to multiple groups: variance among the acceptance rates of each group in g5
biasSI(Q5 ) = Var({acceptance—rate(GS )|G‘S €G° })

* Example: a network of three & and threeg

— acceptance—rate(&)=2/3 Approved Not Approved
— acceptance—rate(&)=2/3 Q
— bias>! = Var ({33}) =0
@ 9 @ 9
Fair result S Y a o
VA bias betw I d
feer:]OaleaS etween male an g g

~

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.

E [2] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.




Fairwalk: Solution Z‘Ixﬂl

* Key idea: modify the random walk procedure in node2vec

* Steps of Fairwalk
— Partition neighbors into demographic groups
— Uniformly sample a demographic group to walk to
— Randomly select a neighboring node within the chosen demographic group

* Example: ratio of each demographic group

— Original network vs. regular random walk vs. fair random walk
network regular B fair

-
(W |

percentage

0.0

gender race

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
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Fairwalk vs. Existing Works ot

* Fairwalk vs. node2vec
— Node2vec: skip-gram model + walk sequences by original random walk
— Fairwalk: skip-gram model + walk sequences by fair random walk

* Fairwalk vs. fairness-aware PageRank

— Fairness-aware PageRank: the minority group should have a certain proportion of
PageRank probability mass

— Fairwalk: all demographic group have the same random walk transition probability
mass

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
[2] Grover, A., & Leskovec, J.. node2vec: Scalable Feature Learning for Networks. KDD 2016.

[3] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.




Fairwalk: Results on Statistical Parity [yt

* Observations
— Fairwalk achieves a more balanced acceptance rates among groups

— Fairwalk increases the fraction of cross-group recommendations
regular  fair

- LA - gender London - gender
2e~*
le™*
nv
3
S 0
2 ¥ W ¥ NN
82 s LA - race London - race
() 3(‘
o
<
22
le=
OQ\Q\W(LQ'\(L INIIATIE NI A 2L 2P0 \ IPA A %
QU NN QO N VY VY ¥ Q QO N N QO N YV vy

Groups
[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
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Recap: Statistical Parity in Fairwalk Z‘lu;n!

e Statistical parity
— Given: (1) a sensitive attribute §; (2) multiple demographic groups QS partitioned by §
Extension to multiple groups: variance among the acceptance rates of each group in g5
biasSI(QS) = disparity = Var({acceptance—rate(GS)|G§ € 95})

* Example: a network of three & and threeg

— acceptance—rate(&)=2/3 Approved Not Approved
— acceptance—rate(&)=2/3 Q
— bias>! = Var ({33}) =0
@ 9 @ 9
Fair result S Y a o
VA bias betw I d
feer:]OaleaS etween male an g g

~

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
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Limitations: Fairwalk it

 Steps of Fairwalk
— Partition neighbors into demographic groups
— Uniformly sample a demographic group to walk to
— Randomly select a neighboring node within the chosen demographic group

 Example: what if all neighbors belong to the same group?
9 Group

| —
/- oundary /-

Starting point of 2

random walk \ / \
- 2

* Observation: Fairwalk may get trapped into the majority group

* Question: how to let the walker go to group boundary and go across group more often?

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
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CrossWalk: Key Idea

* Key idea: upweight edges whose target nodes are either

— Closer to group boundary
— Not in the same demographic group as source node

 Example
— Edge strength is proportional to the transition probability

Group

2_2 oundary /-
{

NS

\ \m

Starting point of
random walk

@
&

[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.

i
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CrossWalk: Proximity to Group Boundary f‘m!

* Intuition: assign higher weight to edges whose target nodes are closer to group
boundary

* Solution: the proximity m(u) of node u can be calculated by
— Performing a fixed-length random walk (length = d) r times
— Calculating the probability that it walks to a node in another demographic group

* Example: suppose we have 2 random walks of length 5 for a node gm

Walk#l: g d an o oo . 1+2
s & & @ miam) =55 =

Walk#2:2 & o &

* Proximity-aware edge reweighting
— Wy,: original edge weight between node u and node v
— N, neighborhood of node u

— p: a hyperparameter
, m(v)P
W,,., X w
w Zze]\fu Wy, m(z)P w

[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.
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Group g

CrossWalk: Solution NUAV A4 et

Starting point of 2 @

d Ik 2

random wa

e Given % e/ \ %
ah a ah

— a: a hyperparameter to control within-group/cross-group probability
— N,: node u’s neighborhood
— |Ry|: number of different demographic groups in JV,

* Edge reweighting: for a node u and its neighbor v, Vv € IV,

: (v)P
— u and v are in the same group: w),, = (1 — « e w
group: wy,, = ( )ZZENu Woymz)P U
p
— uand v are NOT in the same group: w,,, = — miv) w

|Rul Zze]\fu wyzm(z)P %Y

* Key steps
— Generate biased random walk sequences using the reweighted edges
— Learn node representations using skip-gram based techniques on the biased random walk sequences

[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.
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CrossWalk: Experiment il

* Observation: CrossWalk achieves a comparable performance in accuracy with
a much smaller bias

Node classification Link prediction
175 100
[ Total Accuracy [ Total Accuracy

150 [ Disparity 80 [ Disparity
125

>
100 g 60

| 9

o
75 ] ]

g 40
50 | e L

20
25— R S
o DeepWalk FairWalk CrossWalk o DeepWalk FairWalk CrossWalk

[1] Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K. P., Weller, A., & Mirzasoleiman, B.. CrossWalk: Fairness-enhanced Node Representation Learning. AAAI 2022.
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Compositional Fairness in Node Embedding

* Why fairness for embeddings?
— Not just one classification task that considers fairness (e.g., ranking, clustering)
recommendation ranking cIustering

v/v 0

©o 6o B0 o

A |

. i e /\ n
* Why compositional fairness? e
— Compositional fairness: accommodatlon to a comblnatlon of sensitive attributes
— Often many possible sensitive attributes for a downstream task

orange
 Gender: male vs. female
male
e Race*: orange vs. green
female * We use imaginary race groups to avoid
potential offenses

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

i
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Fairness Measure: Representational Invariance f‘lu;n!

* Intuition: independence between the learned embedding z and a sensitive

attribute a
Z, L a,,Vnodeu

where a,, is the sensitive value of node u

* Formulation: mutual information minimization
I1(z,,a,) =0,V node u
— Analogous to statistical parity in classification task

— Key idea: fail to predict a,, using z
y P u & Zu Corresponding to

* Solution: adversarial learning ‘adversarial’
— Maximize the error to predict sensitive feature

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Framework e

* Overview: the proposed compositional fairness framework

* Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (D,)

Sensitive
Attributes

w Gender Gelr?der

\5/\ L) Occupation 3-c5 Zl-/ OCCUEaﬁon

= \\
Age Alge
Nod .. Filtered
input Qraph Emb:dZing Comgﬁ:;lonal IEmIbee(:zing Discriminators

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Key Component #1: Compositional Filter f‘m!

(Also called compositional encoder, i.e., C-ENC)

e Goal: filter sensitive information from the embeddings
— The “filtered” embedding should be invariant to those attributes

* Formulation

1
C—ENC(w,S) = ﬁz f(ENC(w))

keS
— Compositional filter: a collection of filters

— Filter: trainable function f; (neural networks, e.g., MLP)
— Input: node ID u and the set of sensitive attributes S (e.g., gender, age)
— Compositionality: summation over all sensitive attributes

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Framework e

* Overview: the proposed compositional fairness framework

* Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (D,)

Sensitive
Attributes

w Gender Gelr?der

\5/\ L) Occupation 3-c5 Zl-/ OCCUEaﬁon

= \\
Age Alge
Nod .. Filtered
input Qraph Emb:dZing Comgﬁ:;lonal IEmIbee(:zing Discriminators

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Key Component #2: Discriminator Z‘lu;n!

e Goal: predict the sensitive attribute from the ‘filtered” embeddings

* Formulation
D, (C—ENC(w,S5),a") = Pr(a, = a*|c - ENC(w,$))
— Dy,: discriminator for k-th sensitive attribute
— Input: node u’s ‘filtered’ embedding and attribute value
= Pr(au = ak|C — ENC(u, S)): likelihood that node u has that attribute value

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Loss Function Z‘lu;n!

e Pairwise loss function
L(e) = Ledge(s(e); s(er), ., 5(61;1))

+12 2 log(Dk(C_ENC(u'S)’ak))

kES akeA,
— Ledge: pairwise loss function for graph embedding

—log (Dk(C —ENC(u, S), ak)) : the discriminator fails to predict sensitive attribute

correctly with the ‘filtered” embeddings Aartes
« Advantages P , p: oo
— Simple intuition Y — - Ocoupation : -
— Flexible and easy-to-implement module = | |
— Plug-and-play style eing| COmPOSItion L g Discriminators

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Fairness Results DA

* Task: classifying the sensitive attribute from the learned node embeddings
— Baseline methods: each adversary is a 2-layer MLP

* Baseline (no adversary): Vanilla model train without fairness consideration
* Independent adversary: independent adversarial model for each attribute

e Observations

— Accuracy of compositional adversary is no better than majority classifier
— Performance of compositional adversary is at the same level with independent adversaries

MOVIELENSIM | BASELINE GENDER AGE OccuprATION  COMP. MAJORITY =~ RANDOM
NO AD-  ADVERSARY ADVERSARY ADVERSARY ADVERSARY CLASSIFIER CLASSIFIER
VERSARY
_~ AUC
GENDER 0.712 0.532 0.541 0.551 0.511 0.5 0.5 _
AGE 0.412 0.341 0.333 0.321 0.313 0.367 0.1417] Micro
OCCUPATION 0.146 0.141 0.108 0.131 0.121 0.126 0.05 F1

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Effectiveness Results e

 Task: recommendation

e Observation: there is only a small increase in root mean squared error (RMSE)

compared with the vanilla model
1.8

—— Gender Adversary
1.7 —— Age Adversary
16 —— Occupation Adversary
—— Compositional Adversary
1.5 .
—— Baseline No Adversary
Ll
w 14
E 1.3
o
1.2
1.1
1.0 =
0.9
0.8

25 20 75 100 126 150 176 200

Epochs

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Preliminary: Graph Neural Network (GNN)

* Key idea: learn node representations by aggregating information from the neighbors

Nodejepresenwgﬁ@ ;%gatemg’hhmditm@d of node i
(wU) . AGG (h(l) vj € N(L)))

h(l+1)
— GCN: AGG (h@,Vj S ]\f(i)) - Z]E]\f () auh(l)

* Formulation

I

a;; = m\/_ : weight of the edge between node i w.r.t. node j
* d;, d;: degree of node i and node j, respectively
Hidden layer Hidden layer
— GAT: AGG (h}”,v]' € N(i)) = ¥jew,ug bijh, [
* b;j: self attention weight of node i w.r.t. node j | ., .. o ° .. .. .
nput g *
— GraphSAGE: AGG (h}”,v]' € N(i)) = h{|| (e, ciih”) o I 72 S e s
IRV R ol = T R

ﬁ: weight of the edge between node i w.r.t. node j

||: concatenation operation

Cij =

* Applications: node classification, link prediction,

[1] Kipf, T. N., & Welling, M.. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.
[2] Velickovié, P., Cucurull, G., Casanova, A., Romero, A, Lio, P., & Bengio, Y.. Graph Attention Networks. ICLR 2018.

[3] Hamilton, W., Ying, Z., & Leskovec, J.. Inductive Representation Learning on Large Graphs. NeurlPS 2017.




Preliminary: Adversarial Debiasing [yl

* Key idea: learn node representations that
— Preserve structural/attributive information
— Fail to predict sensitive attribute of the corresponding nodes

 Solution: adversarial learning-based approach
— Minimize a task-specific loss function to learn ‘good’ representations
— Maximize the error of predicting sensitive feature to learn ‘fair’ representations

 Example: compositional fairness constraints (CFC) framework

Sensitive
Attributes

D

e I . Gender S
P e ]
Y — . ‘ - Occupation +-d5 :- OOCUEaﬁon
== \ \
. Age Alze

Filtered
Embedding| Discriminators

Node

Embedding Compositional

Filter

Input Graph

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Limitation: Adversarial Learning-based Debiasing e/

* Example: compositional fairness framework

L(e) = Ledge(s(e),s(el‘), ...,S(e;l)) + /12 Z log (Dk(C —ENC(u, S), ak))
keS akEcﬂk
— Legge: pairwise loss function to learn ‘good” embedding

— log (Dk(C —ENC(u, S), ak)): an adversary (a discriminator) to maximize the error of predicting sensitive
attribute to learn ‘fair’ embedding

* Limitations
— Require the sensitive attribute of many nodes to train a good discriminator
— Ignore the fact that sensitive information is hard to obtain due to privacy

* Question: can we apply adversarial learning-based debiasing with limited sensitive
attribute information?

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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FairGNN: Fairness with Limited Sensitive Attribute Information [Vl

* Key idea
— Train a sensitive attribute estimator to infer pseudo sensitive attribute
— Train adversary to learn ‘fair’ embedding using the pseudo sensitive attribute

* FairGNN framework L, o
— GNN-based classifier to predict node label GCN based sensitive e
« Any GNN can be the backbone attribute estimator f; > AU
— Adversarial learning module to debias Fo===—-——--------- b ‘? :
* GCN-based sensitive attribute estimator : ' . s ol | :LR
* Adversary ; fo _’ '_E_' :
— Covariance minimizer °_.| : @ Hidden: : |

[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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FairGNN: Adversarial Debiasing Module [yt

 GCN-based sensitive attribute estimator
— Intuition: generate pseudo sensitive attribute for additional supervision

— Loss function
Lg = _Euevs |5, log 8y, ]
e s, ground-truth sensitive attribute information of node u
« §,: predicted sensitive attribute information of node u
* Vs: a set of nodes with ground-truth sensitive attribute information

* Adversary
— Intuition: maximize the error of predicting pseudo sensitive attribute information

— Loss function
L4 = Eppmis=nl1og fa()] + Eppmis=0y|log(1 — fa(h))]

« §:pseudo sensitive attribute information

* h ~p(h|§ = 1): randomly sample a node embedding whose corresponding node has § = 1
* f4(h): output of

[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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FairGNN: Covariance Minimizer f‘m!

* Observation: adversarial learning is notoriously unstable to train
— Failure to converge may cause discrimination

* Key idea: additional prerequisite of independence is needed to provide
additional supervision signal

* Solution: absolute covariance between model prediction y and pseudo
sensitive attribute § should be minimized

— Why absolute: covariance can be negative

Lp = |cov($,9)| = |E[(§ — E[SDY — E[yD]I

[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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GCN based sensitive a
iy JRIE | !
* Regularized learning B

L — LC + L E — a L A -+ ﬁ L R E:\['i‘itft_'?_"fr,x: \Output ayer; zzc

FairGNN: Overall Loss Function

* Intuition
— Minimize the classification loss L. to learn representative node representation

— Minimize the sensitive attribute estimation loss L to generate accurate pseudo
sensitive attribute information

— Maximize the adversarial loss L, (i.e., —aL,) to debias the learned node representation
— Minimize the covariance Ly to stabilize the training of adversary

[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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FairGNN: Experiment

I

* Observation: FairGNN achieves comparable node classification accuracy with
a much smaller bias

Dataset Metrics GCN GAT ALFR ALFR-e Debias Debias-e FCGE FairGCN FairGAT
ACC (%) 70.2 +0.1 70.4 +0.1 65.4 +0.3 68.0 +0.6 65.2 +0.7 67.5 +0.7 65.9 +0.2 70.0 £0.3 70.1 +£0.1
Pokec-z AUC (%) 77.2 £0.1 76.7 £0.1 71.3 £0.3 74.0 £0.7 71.4 £0.6 74.2 +0.7 71.0 £0.2 76.7 £0.2 76.5 +0.2
Asp (%) 99 +1.1 9.1 +0.9 2.8 £0.5 5.8 £0.4 1.9 £0.6 4.7 +£1.0 3.1 +0.5 0.9 +0.5 0.5 +0.3
Ago (%) 9.1 +£0.6 8.4 +0.6 1.1 +£0.4 2.8 £0.8 1.9 +0.4 30+14 1.7 £0.6 1.7 £0.2 0.8 +0.3
ACC (%) 70.5 +£0.2 70.3 +£0.1 63.1 £0.6 66.2 +£0.5 62.6 +0.9 65.6 +0.8 64.8 +0.5 70.1 +0.2 70.0 +0.2
Pokec-n AUC (%) 75.1 +0.2 75.1 +0.2 67.7 £0.5 71.9 +0.3 67.9 +£0.7 71.7 £0.7 69.5 +0.4 74.9 +0.4 74.9 +0.4
Asp (%) 9.6 +0.9 94 +0.7 3.05 +0.5 4.1 +0.5 2.4 +0.7 3.6 +0.2 4.1 +0.8 0.8 +£0.2 0.6 +0.3
Aeo (%) 12.8 +£1.3 12.0 £1.5 3.9 +£0.6 4.6 +1.6 2.6 1.0 4.4 +1.2 5.5 +£0.9 1.1 +0.5 0.8 +0.2
ACC (%) 71.2 £0.5 71.9 +1.1 64.3 +1.3 66.0 +0.4 63.1 +£1.1 65.6 +2.4 66.0 +1.5 71.1+1.0 71.5 +0.8
NBA AUC (%) 78.3 £0.3 78.2 £0.6 71.5 £0.3 72.9 +£1.0 71.3 +0.7 72.9 +£1.2 73.6 £1.5 77.0 £0.3 77.5 £0.7
Asp (%) 7.9 +1.3 10.2 +£2.5 2.3 +0.9 4.7 £1.8 25 +1.5 5.3 +0.9 2.9 +1.0 1.0 +0.5 0.7 +0.5
AEO(%) 17.8 £2.6 15.9 +4.0 3.2+1.5 4.7 £1.7 3.1+1.9 3.1+1.3 3.0+1.2 1.2 +0.4 0.7 £0.3

[1] Dai, E., & Wang, S.. Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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Coffee Break 3@

* 15 minutes coffee break
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Graph Mining: An Optimization Perspective [yl

* A pipeline of graph mining

Input graph A Mining model w/ parameter 6 Mining results Y
101010
QIDIOI
[l
Input Output -
O

* Formulation
— Input

* Input graph A } Minimize task-specific
* Model parameters 6 loss function [(A,Y, 0)
— Output: mining results Y

* Examples: ranking vectors, class probabilities, embedding

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Classic Graph Mining Algorithms [yl

Examples of Classic Graph Mining Algorithm

Mining Task Task Specific Loss Function [() Mining Result Y* Parameters

PageRank mincr’(I— A)r+ (1 —o)|lr — e|lf PageRank vector r damping factor ¢
r teleportation vector e
Spectral min Tr (UTLU _
P . U ( ) eigenvectors U # clusters k
Clustering s.t. UTu=1

n

Ali, j] (logg (X[, : 1X[i,: 17 ing dimensi
Z ]]( gg(—X[j,: IX[i,:] )) embedding matrix X embeddlr.1g dimension d
=1 # negative samples b

i
bE;r_p [log g(=X[j’,: 1X[i,: 1M1

M:

[

LINE (1st) Xn

+.ﬂ

ranking

Call for Papers - CIKM 2019
. kil -
-
’,
. . s
eey e algorithm i yos
Conference on Information and Knowledge Management (CIKM] L’
Emconferencacry v 1 N, * -
° ° o ' ' GD’ ) S
1) . -
o o ‘
A '
CIKM 2019 : Conference on Information and WIKICFP a '

°2 ‘..
L
°
sy
°
e
o.‘ %
.

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.



InFORM: Individual Fairness on GRaph Mining Z‘IDEHE?

* Research questions
RQ1. Measure: how to quantitatively measure individual bias?
* Problem #1: InFORM measure problem

RQ2. Algorithms: how to enforce individual fairness?
* Problem #2: InFORM algorithms problem

RQ3. Cost: what is the cost of individual fairness?
* Problem #3: InFORM cost problem

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Problem #1: InFORM Measure DA

® QUEStions Input Graph: A ‘ode
— How to determine if the mining results are fair? /\T
— How to quantitatively measure the overall bias? . )
[ J Input \_// Node j
— Node-node similarity matrix S /]>
* Non-negative, symmetric v
— Graph mining algorithm [(A, Y, 0) \z"(k%/
’ LOSS funCtion l(.) ins Similarity Links: S
« Additional set of parameters 6 g fesuter Y i
— Fairness tolerance parameter € : Nf;"v\ [
Y[i, :] < F ~ 2 -~
. . ) tolerance| | —
* Output o omoa v sPESE
— Binary decision on whether the mining result is fair Node}:—'T—‘_-v
— Individual bias measure Bias(Y, S) ‘V'\:\_

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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InNFORM Measure: Formulation A

* Principle: similar nodes = similar mining results

* Mathematical formulation
€

— Intuition: if S[i, j] is high, ﬁ is small > push Y[i,:] and Y[j, : ] to be more similar
— Observation: inequality should hold for every pairs of nodes i and j
 Limitation: too many constraints - too restrictive to be fulfilled

* Relaxed criteria: }.;_; > 71 [|Y[i,:] — Y[J, 1II2S[i,j] = 2Tr(Y'LgY) <me =6

A/ o

¢« &

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.

Vi,j=1,...,n




InNFORM Measure: Solution f{ml

* InFORM (Individual Fairness on GRaph Mining)

— Given: (1) a graph mining result Y; (2) a symmetric similarity matrix S; and (3) a
constant fairness tolerance 0
—Y is individually fair w.r.t. S if it satisfies

o)
Tr(Y'LgY) < >
— Overall individual bias is Bias(Y,S) = Tr(Y'LgY)

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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InNFORM Measure: Lipschitz Property Z‘lu;n!

* (D4, D,)-Lipschitz property: a function f is (D, D,)-Lipschitz if it satisfies
D, (f@, f()) < LDy (i,)), ¥ (x, )

— L is Lipschitz constant
* InFORM naturally satisfies (D, D, )-Lipschitz property as long as

- f(@©) = Yli,:]

-D:(F@), f()) = IY[L,: 1= Y[, : % D, (G, j) =

* Lipschitz constant of InNFORM is €

S[i,jl

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.




Problem #2: InFORM Algorithms

* Question: how to mitigate the bias of the mining results?

* Input
— Node-node similarity matrix S
— Graph mining algorithm [(A, Y, 0)
— Individual bias measure Bias(Y, S)
* Defined in the previous problem (InFORM Measures)

9290000500

* Qutput: revised mining result Y™ that minimizes
— Task-specific loss function [(A, Y, 0)
— Individual bias measure Bias(Y, S)

w
-
b 4
-
-
-
-
-

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Individual Bias Mitigation f‘ml

* Graph mining pipeline

Input graph A Mining model w/ parameter 6 Mining results Y
510101 N
Input Output -
t

* Observation: bias can be introduced/amplified in each component
— Solution: bias can be mitigated in each part

 Algorithmic frameworks
— Debiasing the input graph
— Debiasing the mining model mutually complementary
— Debiasing the mining results

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Debiasing the Input Graph e

* Goal: bias mitigation via a pre-processing strategy

e Intuition: learn a new topology of graph A such that
— A is as similar to the original graph A as possible
— Bias of mining results on A is minimized

* Optimization problem P Consistency in graph topology
_ —~ 2
min J = ||A— Al + aTr(Y"LgY)
Y F N g
s.t. Y =argminy [(A)Y,0) ~TEE
* Challenge: bi-level optimization
— Solution: exploration of KKT conditions

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-set Attacks on Machine Learners. AAAI 2015.




Problem Reduction or‘lbml

* Considering the KKT conditions,
{ A- A +aTr(Y'LsY)
S. L. ayl(g, Y, H) = (

min | =

* Proposed method
(1) Fix A (A = A at initialization), find Y using current A
(2) Fix Y, update A by gradient descent
(3) Iterate between (1) and (2)

e Problem: how to compute the gradient w.r.t. A?

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Gradient Computation Z‘Iu;ﬂl

Key component to calculate

« Computing gradient w.r.t. A L
o Y
— =2(A—A) +a|[Tr| 2YLs —=——
oA 9A[L, ]

( T
0 0 0
dj _{ + (—i) — diag (_,{'() , if undirected

L — JdA JdA 0
dA W o 1.
—, if directed
. OA
— Y satisfies BYI(K, Y, 9) =0
B ~ aY \]. . . ~ oY
- H = [Tr (ZYLS aK[i,j])] is a matrix with H[i, j] = Tr (ZYLS aK[i,j])

* Question: How to efficiently calculate H?

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Instantiation #1: PageRank

* Goal: efficient calculation of H for PageRank
* Mining results

r=(1-c)Qe
 Partial derivatives
H=2cQ Lsr
-Q=(0-cA)! 2¢Q7Lgr
* Time complexity X

— Straightforward: 0(n?)

—OQurs: O(my + m, +n)
* mu: number of edgesin A
* mg: number of edgesin S

* n: number of nodes

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Instantiation #2: Spectral Clustering

Goal: efficient calculation of H for spectral clustering

Mining results
U = eigenvectors with k smallest eigenvalues

* Partial derivatives Vectorize diag(M;Lsu;u;’)
and stack it n times Low-rank
=2 Y{dlag(M Lsu;u] )1,xn|—[M;Lsu;uj|)
i=1
— (4;,u;) = i-th smallest eigenpair
- M; = (41 -Ly)" M;Lqu; uz"
* Time complexity X

— Straightforward: 0(k?(m + n) + k3n + kn3)
— Ours: O((k + r)(my + n) + k(m, + n) + (k +1)%n)
* k:number of clusters

* r:number of largest eigenvalues
* mq: number of edgesin A

* m,: number of edgesin S
* n:number of nodes

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Instantiation #3: LINE (1st)

Goal: efficient calculation of H for LINE (1st)

Mining results

T(Ali, j1+ A[j,i])
3/4 3/4
dl-dj + di dj
— d; = outdegree of node i, T = }1-, d?” and b = number of negative samples
Element-wise in-place calculation Vectorize diag(BLg)
H= Zf(g n KT) o Lg|— 2diag(BLs)1an and stack it n times
— f(+) calculates Hadamard inverse, o calculates Hadamard product
- B=2f(a%4(a V%) +[dly,)) + £ (@¥/4(dV*)" +[d1,) with d¥[i] = dF
Time complexity . ~
] 3 Stack d n times
— Straightforward: O0(n>)
— Ours: O(my + my, +n)
* mq: number of edgesin A

* m,: number of edgesin S
* n:number of nodes

Y[i,:]Y[j,:]F =log —logh

Partial derivatives

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Debiasing the Mining Model f‘lu;n!

* Goal: bias mitigation during model optimization

* Intuition: optimizing a regularized objective such that

— Task-specific loss function is minimized
— Bias of mining results as regularization penalty is minimized

o Optimization problem /Task—specific loss function
min ] = [(AY,0) + (xTr(YT‘L\SY)

e Solution Bias measure
aJ _ al(AY,0)

— General: (stochastic) gradient descent prvia + 2aLgY
— Task-specific: specific algorithm designed for the graph mining problem

* Advantage
— Linear time complexity incurred in computing the gradient

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Instantiations: Debiasing the Mining Model [yt

* PageRank

— Objective function: min cr” (I — A)r + (1 — ¢)||r — e||%# + ar”Lgr
r

— Solution: r* = ¢ (A — %LS) r + (1—c)e
* PageRank on new transition matrix|A — %LS
+ IfLg=1-S§,thenr’ = (-=A+-—S)r + e
* Spectral clustering
— Objective function: min Tr(UTLAU) + aTr(UTLgU) = Tr(UTLp44sU)

— Solution: U™ = eigenvectors of L, o5 With k smallest eigenvalues
e Spectral clustering on an augmented graph A + aS

e LINE (1st)

— Objective function )
max log g(x;x;) + bE;rcp |log g(—x;x])| — al|x; — Xj||FS[i,j] Vi,j=1,..,n

Xi,XJ
— Solution: stochastic gradient descent

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Debiasing the Mining Results

* Goal: bias mitigation via a post-processing strategy
* Intuition: no access to either the input graph or the graph mining model

* Optimization problem / Consistency of mining results, convex
myin J =Y =Yz 4+ aTr(Y'LsY)
— Y is the vanilla mining results Bias measure, convex

e Solution: (I + aS)Y* =Y
— Convex loss function as long as @ = 0 - global optima by 3—‘]( =0
— Solve by conjugate gradient (or other linear system solvers)

* Advantages
— No knowledge needed on the input graph
— Model-agnostic

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Problem #3: InFORM Cost f{ml

* Question: how to quantitatively characterize the cost of individual fairness?

* Input
— Vanilla mining result Y

— Debiased mining result Y*
e Learned by the previous problem (InFORM Algorithms)

e Output: an upper bound of ||Y — Y*||¢

* Debiasing methods
— Debiasing the input graph
— Debiasing the mining model
— Debiasing the mining results =—> main focus

depend on specific graph topology/mining model

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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InFORM Cost: Debiasing the Mining Results ot

* Given
— A graph with n nodes and adjacency matrix A
— A node-node similarity matrix S

— Vanilla mining results Y
— Debiased mining results Y* = (I + aS)~'Y

* If ||S — Al|r = A, we have
IV =¥l < 2ayi (& +/rank(A) oy (A) ) I

e Observation: the cost of debiasing the mining results depends on
— The number of nodes n (i.e., size of the input graph)
— The difference A between A and S
— The rank of A

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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InFORM: Experiment

* Graph mining task: PageRank

* Observation: effective in mitigating bias while preserving the performance of the vanilla
algorithm with relatively small changes to the original mining results

— Similar observations for spectral clustering and LINE (1st)

Debiasing the Input Graph

Datasets |

Jaccard Index

|

Cosine Similarity

Diff KL Prec@50 | NDCG@50 | Reduce | Time Diff KL Prec@50 | NDCG@50 | Reduce | Time
Twitch  0.109 | 5.37 x 10~* 1.000 1.000 24.7% | 564.9 | 0.299 | 5.41 x 1073 0.860 0.899 62.9% | 649.3
PPI 0.185 | 1.90 x 1073 0.920 0.944 43.4% | 584.4 | 0.328 | 8.07 x 1073 0.780 0.838 68.7% | 636.8
Debiasing the Mining Model
Datasete | __JaccardIndex | _Cosine Similarity
Diff KL Prec@50 | NDCG@50 | Reduce | Time Diff KL Prec@50 | NDCG@50 | Reduce | Time
Twitch | 0.182 | 497 x 10~ 0.940 0.958 62.0% | 16.18 | 0.315 | 1.05% 10~ 0.940 0.957 73.9% | 12.73
PPI 0.211 | 4.78 x 10~ 0.920 0.942 50.8% | 10.76 | 0.280 | 9.56 X 10~ 0.900 0.928 67.5% | 10.50
Debiasing the Mining Results
—— _JaccardIndex | _Cosine Similarity
Diff KL Prec@50 | NDCG@50 | Reduce | Time Diff KL Prec@50 | NDCG@50 | Reduce | Time
Twitch | 0.035 | 9.75 x 10 * 0.980 0.986 33.9% | 0.033 | 0.101 | 5.84 x 10~ 0.940 0.958 44.6% | 0.024
PPI 0.045 | 1.22x 10> 0.940 0.958 27.0% | 0.020 | 0.112 | 6.97 x 107> 0.940 0.958 45.0% | 0.019

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.
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Overview of Part i g‘ml

Individual Fairness on Graphs

l l

Laplacian Regularizer Learning-to-Rank

e e )




Individual Fairness on Graph Neural Network [yt

* Goal: debias a graph neural network (GNN) to ensure individual fairness

* Key challenge: distance calibration
— Lipschitz condition (used in InFORM)
dy(M(x),M(y)) < Ld,(x,y)

— Direct distance comparison fails to calibrate the differences between different individuals

‘o :f% ‘@cf®® -~ _

° Example - n ‘ wﬂ RHS of Lipschitz condition: i
30 :both Ld(u1, us) and Ld( U2, U4) are 25.!
1|20 3 | 2

i
5 "o :
o|7|20|2| > I :

D(ur,u4) < Ld(ur, us) -
70| 0 | 50| 50

u :Wf us
20(50| 0|5 Q ¢ @
2|50| 5|0 D(uz, us)< Ld(uz, Us) -
(a) Outcome distance matrix (b) Lipschitz condition judgement
from distance metric D based on human knowledge

e Question: Can we achieve fairness with natural calibration across individuals?

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Ranking baskd InDividual FaiRnESS [yt

* Ranking-based individual fairness
— Given: (1) the pairwiseAnode similarity matrix S; of the input graph G; (2) the pairwise similarity matrix
Sy of the GNN output Y
— Y is individually fair if, for each node i, it satisfies that
ranking list derived by S¢[i, :] = ranking list derived by S¢[i, :]

Consistent
- .

e Advantage: naturally calibrate across individuals
— No direct distance comparison

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Framework Overview DA

e GNN backbone model

— Learn node representations

—p | GNN Model |

Input Graph

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Backbone Model f{ml

* Goal: learn node representations by a GNN
* Formulation: [-th GNN Layer

) = (w@ . AGG ({h]@, Vj € N(i)}))

— hl@: embedding of node i at [-th layer

~wW:. weight parameters at [-th layer

— AGG(-): information aggregation function (e.g., mean, weighted sum)
— o(+): activation function (e.g., ReLU)

— N (i): neighborhood set of node i

* Advantage: REDRESS works on any GNN model

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Framework Overview DA

Module 1: Utility optimization I
[ oo vodet—s Utility loss ‘  Utility maximization
X — Minimize the downstream
task-specific loss
Ground truthY Predigtion Y ]

Input Graph

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Utility Maximization f{ml

* Goal: minimize the downstream task-specific loss function
* Loss function: cross-entropy loss

Lusiey == ) YIi,j/110g¥[i,j]
(i,j))eT
—Y[i,j]: i-th row and j-th column in ground truth Y
—Y[i, j]: i-th row and j-th column in GNN predictions Y

— J': a set of tuples
* Node classification: T is a set of (node, class) tuples
* Link prediction: T is a set of (node, node) tuples

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Framework Overview DA

Module 1: Utility optimization o
—» | GNN Model |—> Utility loss ‘
-— .
Ground truthY Prediction Y . . .
+ — ¢ Individual fairness

Input Graph

optimization

— Enforce ranking-based
individual fairness

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Individual Fairness Optimization [yt

* Given: (1) pairwise node similarity matrix S; of input graph G and (2) pairwise
similarity matrix Sg of GNN output Y

* Goal: for each node i, ensure that the ranking lists derived from S i, : ] and
S¢li,: ] are similar

* Example: ranking lists of node u4
Ranking list derived by S¢[1, :] Ranking list derived by S [1

* Problem: ranking is a non-differentiable operation

— loss on the ranking lists will be non-differentiable

Unfair results
Rankings of u3 and
u, are different in
two ranking lists

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Individual Fairness Optimization

* Solution
— Consider the relative ranking orders of every node pairin S5 and Sy
— Ensure that every node pair’s relative orders are consistent across S; and Sy

 Example: ranking lists of node ulu@

Ranking list derived by Sg¢[1, :] Ranking list derived by S¢[1, :]
& o n
e ) «
U, U Us
i ’ 7
N 1\1,3 u’5, / uf e 7/

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Relative Ranking Order f{ml

* Key idea: relative ranking order of u and v = Probability that u ranks higher than v
— Inspired by learning-to-rank
* Input space: pairwise node similarity matrix S; of graph G

1 wranks higher than v

P, (i) = % (1 + Ty (l)) T,,,(i) =< 0 wuand v has the same rank
—1 v ranks higher than u

* Output space: pairwise similarity matrix S¢ of GNN output Y
. 1
P,(1) = 1

+ e—a(S?[i,u]—S?[i,v])
where « is a constant scalar

* Fairness loss for a node pair
Luv(i) — _Puv(i) log puv(i) _ (1 _ Puv(i)) log (1 o puv(i))

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Scale-up Computation

* Solution: focus on top-k similar nodes for each node i in S¢
— Individual fairness: similar outcomes for similar individuals

— Define zgy = similarity metric for two top-k ranking lists (e.g., NDCG@k)

i

0 (nk?) time complexity

»
»

Lfairness = y y S“ L, (1) |AZ@k |u,v
I u_ v

where [Azgy |, = absolute value changes in zgy if nodes u and v are swapped
— High [4zgy|,» = u and v are dissimilar - more penalty if ranked wrong

 Example

Listg,: Ground truth ranking.

|AZ@i| 3,5 = |1Z@i (Listy,, List,,;) — |

Fy ) ob
/ Us Uy Uz Us

g ” List,,;: Predicted ranking.
&
Uz Us

O ® C

Us Uy Uz us

List,,;": Ranking with u; & ug switched.

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Overall Loss Function f{ml

 Utility loss
Lutility - = Z Y[lu]] log?[l)]]
(L,j)ET
* Fairness loss
Luv(i) — _Puv(i) log Puv(i) _ (1 R Puv(i)) log (1 o puv(i))

Lfairness = Z Z Z Luv(i) |AZ@k |u,v
I u v

L = Lutility + ¥ Lfairness
where y is the regularization hyperparameter

e Total loss

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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REDRESS: Experiment DA

* Observations for node classification
— Comparable performance on model utility compared with the best ones
— Best performance on the ranking-based individual fairness

* Similar observations for link prediction

Vanilla 9059+ 03( — ) 5084x12( — ) 9059 +03( — ) 1829+08( — )

GON InFoRM 88.66 + 1.1 (—2.13%)  53.38 + 1.6 (+5.00%) 87.55 + 0.9 (—3.36%)  19.18 + 0.9 (+4.87%)

PFR 87.51 + 0.7 (-3.40%)  37.12 + 0.9 (—27.0%) 86.16 + 0.2 (—4.89%)  11.98 + 1.3 (—34.5%)

- REDRESS (Ours) 90.70 + 0.2 (+0.12%)  55.01 + 1.9 (+8.20%) 89.16 + 0.3 (—1.58%)  21.28 + 0.3 (+16.4%)
Vanilla 8748 +08( — ) 7400x01( — ) 8748+ 08( — ) 3236x03( — )

SGC InFoRM 88.07 + 0.1 (+0.67%)  74.29 + 0.1 (+0.39%) 88.65 + 0.4 (+1.34%)  32.37 + 0.4 (+0.03%)

PFR 88.31 + 0.1 (+0.94%)  48.40 + 0.1 (—34.6%) 84.34 + 0.3 (-3.59%)  28.87 + 0.9 (—10.8%)

REDRESS (Ours) 90.01 + 0.2 (+2.89%)  76.60 + 0.1 (+3.51%) 89.35 + 0.1 (+2.14%)  34.24 + 0.2 (+5.81%)

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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Recap: Counterfactual Fairness e

counterfactual version

* Definition: same outcomes for|‘different versions’|of the same candidate
Pr()?5=51 =cCls =5, x = x) = Pr(fls=52 =cCls =5,,x = x)

- Pr()?5=51 =cCls =51, x = x): version 1 of x with sensitive demographic s

- Pr()?5=52 =Cls =5,,x = x): version 2 of X with sensitive demographic s,
* Intuition: perturbations on the sensitive attribute should not affect the output

e Example: causal graph of loan approval

education
’ history
Unfair! ‘
gender and race can affect '
loan approval decision )w
\ annual

salary

approved

[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurlPS 2017.
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Preliminary: Stability Z‘lu;ﬂl

* Definition: perturbations on the input data should not affect the output too
much

 Mathematical formulation: Lipschitz condition
di(M(x),M(%)) < Ld,(x, %)
— M: a mapping from input to output
— d: distance metric for output
— d,: distance metric for input
— L: Lipschitz constant
— X: perturbed version of original input data x

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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Counterfactual Fairness vs. Stability [yt

* Given
— A: binary adjacency matrix of a graph
— X,,: feature vector x,, of a node u
- b, = [xu; Alu, :]]: information vector of node u
— i: perturbed version of node u with information vector by,
 Perturbation(s) on x,, or Afu, :]
— b,,: information vector of node i

— 1i°: counterfactual version of node u
* Modification on the value of sensitive attribute s in x,,

— ENC(u): an encoder function that learns the embedding of node u

 Counterfactual fairness
|IENC(u) — ENC(ﬁ)Ilp =0

 Stability -
IENC(w) — ENC@)l, < L|[by — byl

* Question: can we learn node embedding that is both counterfactually fair and stable?

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Contrastive Learning-based Framework et

Input Graph
Label 1
Label 2

\ X Drop edge
Sensitive attribute (s): _—

{female,male}

L
v

Node/Edge Perturbation

Counterfactual Graph

Change the value of
a sensitive attribute

| Perturb the edge and
attribute of node u v
maximize similarity among embeddings of u, #, #i°

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Model Architecture [Vl

* Given

— hg{): representation of node u at k-th layer
— NV (u): neighborhood of node u

- Wc(lk): self-attention weight matrix at k-th layer
(k)

- W = ||w(C'L‘)|| : Lipschitz-normalization on W'
a
p

W)

: spectral norm of Wék)
p

— WT(lk): weight matrix associated with the neighbors of node u
e The k-th NIFTY layer learns node representation by
h(o = ¢ (Wék—l)hgk—l) + WD z hgk—1))
VvEN (u)
* NIFTY encoder ENC(-) = a stack of K NIFTY layers

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Contrastive Loss el

e Goal: maximize similarity among embeddings of u, i, #i°

* Augmented graph: either (1) edge/attribute perturbed graph or (2) counterfactual graph with modification on the value
of sensitive attribute

* Formulation
D (FC(zu), SG(zZ“g)) +D (Fc(ziug), SG(zu))
2

LS (u, ﬁaug) =

— D(:,"): cosine distance

— 7?Y8: counterpart of node u in the augmented graph
~ z,,Z, °: representation of nodes u and %248 learned by NIFTY encoder
— FC(): a fully-connected layer for embedding alignment

— SG(-): stop-grad operator, stop calculating the gradient with respect to its input

e L FC(z,) and z;, © are similar
* Intuition: minimize L

FC(ziug) and z,, are similar

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Overall Loss Function f{ml

e Overall loss function
L = (1 — A)Lc + A(Eu [LS (u, ﬂ)] + [, [Ls (u: ﬂs)])
— A: regularization hyperparameter
— L.: task-specific loss
* E.g., cross-entropy loss for node classification
— E, [ Ls(u, ii)]: similarity loss of original graph and the edge/attribute perturbed graph
— E,[Ls(u, ii%)]: similarity loss of original graph and the counterfactual graph

* Intuition: jointly minimize
— The task-specific loss
— Distance among embeddings of u, &t and #°, for each node u

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Counterfactual Fairness A

* Given
— ENC(-): a K-layer NIFTY encoder

o Wc(lk): self-attention weight matrix at k-th layer
— S:a binary-valued sensitive attribute s

— u:anode u in the graph
— 11°: the counterfactual version of node u by flipping the value of s

* NIFTY is counterfactually fair with the unfairness uppgr bounded as follows
IENC(u) — ENC(@5)]|,, < 1_[ HWCE")HP
k=1

 Remarks
— Upper bounded counterfactual unfairness (i.e., |[ENC(u) — ENC(%°)]| )

— Normalized Wék) — counterfactually fair ENC(u)

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Stability DA

* Given
— ENC(:): a K-layer NIFTY encoder

o Wc(lk): self-attention weight matrix at k-th layer
— S: a binary-valued sensitive attribute
— b,,: a node u with information vector b,,
— b,,: perturbed version i of node u with information vector

* NIFTY learns stable node embedding
IENC(u) — ENC@)|l,, < 1_[ [ o

* Remarks
— Lipschitz constant = Hk 1 Hw(k) H

— Normalized W( ) > small LIpSChItZ constant - stable ENC(u)

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Experiment [yt

* Observation: NIFTY improves both fairness and stability

(a) German credit graph (b) Recidivism graph (c) Credit defaulter graph
30 20 25 T
P~ o 15 5 20
g 20 g 2 s
E15 E 10 £ R
€ 10 @ B £ 5 = € 10
) > 5 ’ )
5 [P 5 .- BT =
20 50 60
50
15 40 Q
z” 235 g0
3 10 8 - O] 230
- @ @ 220 T 'm . E 20 £
- , ===
0 R — 0 0 . =

1 GCN B NIFTY-GCN [1 GIN B NIFTY-GIN B JK B NIFTY-JK
[ SAGE [ NIFTY-SAGE [ INFOMAX B NIFTY-INFOMAX

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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Limitation: Counterfactual Fairness and NIFTY [yt

 Counterfactual fairness: same outcomes for ‘different versions’ of the same
candidate

* Counterfactual graph generation: perturbation on the sensitive attribute of
central node u

* Uniqueness of graph data: change in neighboring nodes could affect the
central node . ol s
><Dopedge
attribute (s):

— Not considered in NIFTY r i \ \ : Dokl

Counterfactual Graph
Node/Edge Perturbat:on g
I

I Change the value of u H
\ i a sensitive attribute ﬁs\ |
] \\Q% i % i

Perturb the edge an d
attribute of node u
maximize similarity among embeddings of u, i, %°

[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NeurIPS 2017.
E [2] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.




GEAR: Graph Counterfactual Fairness Z‘lu;n!

* Intuition: same outcomes of a node no matter how the sensitive attribute
changes for any node in the graph

* Given
— G = (A X):agraph
* A:adjacency matrix
* X: node feature matrix

— S: a vector representing the sensitive attribute of all nodes
* s[i] is the sensitive attribute of node i in G
— s': the counterfactual version of s by flipping the sensitive attribute of any node in A
— (Y[, : ])s=s6=(ax): mining results of node i when the sensitive attribute vector is s and
input graph is (A, X)
 The mining results Y satisfies graph counterfactual fairness if it satisfies

(Y[i,: ])S=S,G=(A,X) = (Y[i,: ])s=s’,G=(A,X)

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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GEAR: Framework Overview

* Module #1: counterfactual data augmentation
* Module #2: fair representation learning

i

anut Graph \

Subgraph

Node

Central node

Non-sensitive
features

Sensitive
features

Counterfactual Data Augmentation

Original Fairness constraint s’ Counterfactual
z_E oy R g S
\. i&‘I'IE'E E&m'iq \-:n:. -
tcm/. . — | e EETTT, ! o CETTD = | — e AN

S Encoder |&aorm; | &aoom = Decoder
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0

Fair Representation Learning

representations

-
-
(]
(=5
0 Node
(=]
\Z

Self-perturbation Original Neighbor-perturbation
ooz =y —_— e "o == == s s s s s s s s e e e e ==
- ==== [F e mmm] -:Ial:l:l B |- mmmm] BT L= ] BT \ |
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- - Y aa
= = L e = Nee
o |
| w=n N wn S S 5 o/ NS !
& | > & | 7 e & | 7
[ ) = - o
[C=mma) — [ ===a —
'E'ﬁéfﬁér'-:;- """""" Encoder + "Encoder-L_ T Encoder - -11. """"
v - A, t @
_ Siamese network & _Siamese @B\ ggrl'ega © | &
Z; . . z; o Zi
2 L 2
Prediction 1 Y,y 4 i (o, o )
rediction loss (Y,Y) 3 Fairness loss( ’ )

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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GEAR: Counterfactual Data Generation DA

* Goal: counterfactual graph generation by perturbing sensitive attribute of arbitrary node(s)
in the graph

* Assumption: exogenous sensitive attribute - no parent variable in the causal graph

* Challenges
— C1: too many possible combinations of perturbation
— C2: modeling of exogenous sensitive attribute

Counterfactual Data Augmentation
Original Fairness constraint S’ Counterfactual
(g tEE'h o W rg e l': <= o )
&:ﬂ:ﬂ Y |?|:|:|:|:|:|| E?EEEI:I:I O : [ &
[ - ' 'que CITTT 1] ¥ Y=====RR o
=== B H a0 T ! o CTETD = | l Iy
S Encoder & orrm! | &omerm m | Decoder
== Somm (S e \___e=mo

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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C1: Reducing Number of Counterfactuals f‘m!

* Problems: too many possible combinations of sensitive attribute perturbation

* Facts Eon oo
[ (]
— The causal model of a large graph is hard to obtain \.Icgft'cm
. . . . S — &
— Each node is mostly influenced by its nearest neighbors /"
* Solution: local subgraph S\EED/.'.
— Random walk with restart for proximity computation ___ - i
— Top-k node selection for subgraph extraction - l/‘
e
Subgraph
&:Node
&:Central node

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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C2: Modeling Exogenous Sensitive Attribute

* Exogenous sensitive attribute: no parent variable in the causal graph
— Cannot be affected by graph structure or any node features
— Can affect graph structure and other node features

* Key idea: decouple the information about graph structure and sensitive
attribute

 Solution: graph variational auto-encoder (GVAE) + fairness constraints
— GVAE: learn representative embedding about graph structure

— Fairness constraints: decouple the information about graph structure and sensitive
attribute

* Key idea: train a discriminator to predict sensitive attribute from embedding
* Optimization: alternating stochastic gradient descent

— Minimize reconstruction loss of GVAE
— Maximize the prediction error of discriminator

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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GEAR: Counterfactual Data Generation

Train a fair GVAE to learn embedding for subgraph reconstruction

Flip the sensitive attribute of a node in the subgraph

— Self-perturbation: flip the sensitive attribute of the central node

Extract local subgraph of a central node with random walk with restart

— Neighbor perturbation: flip the sensitive attribute of any nodes except

Generate two counterfactual subgraphs based on self-perturbation and neighbor perturbation

Counterfactual Data Augmentation
Original Fairness g)vnstraint i:
[ | o | ~— — A — 4 Fm——————— :
(r %:n:n &\ | @ CCTTT], | oy CCTET] M |
| @ ' ' @ !
[ 'que CITTT 1] ¥ Y=====RR
-:::::/- e ‘ |:|~':&|:|:|:|:|:|i»: o CCTTT] = |
S l / | COITE! 1 g EOET = |
S Encoder :.'.:|:|:|:|:|. :-.-EIIIII =
=== S oDl S e

Counterfactual
& e o )
)
as

-
.-./.1_/-'
&

[1] Ma, J., Guo, R., Wan, M., Yang,

i

L., Zhang, A., & Li, J..

Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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GEAR: Fair Representation Learning e

e Goal: learn node representation that is invariant to counterfactual graphs

* Key idea: for a node u, minimize the distance among

— Original embedding (z,),
— Self-perturbation embedding (z,)
— Neighbor-perturbation embedding (Z_u)

* Contrastive loss
L = [Eu [(1 - As)d(zu; Z) + /‘lsd (Zu' Z_u)]

- AS : hype rparam eter Fair Representation Learning
. . Self-perturbation Original Neighbor-perturbati
— d: a distance metric Fo=== peTua N ; riginal = g s S St S
[ =g e\ ! S = e
T~ S | ST
| =mua] @ @
4 r =
Encoder== _~  Encoder={= Encoder .—l_‘=- ___________ Encoder 4=
<‘ v A t .
— &» Siamese network - | ggI"ega C s em
i == s Z;
% ¥
Prediction loss (Y,Y Y : (o, oo )
x.Y) 9, Fairness loss G ; )

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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GEAR: Experiment

e Observations

— GEAR achieves comparable performance in utility metrics and other group fairness

metrics

— GEAR achieves the best performance in graph counterfactual fairness measure

Dataset Method Prediction Performance Fairness
Accuracy (T) | Fl-score (T) | AUROC(T) Apo (1) App (1) dcr (1) R*(])

Synthetic || GCN 0.686 £ 0.015 | 0.687 £0.020 | 0.758 +0.017 0.050 £ 0.030 | 0.060 + 0.033 0.101 + 0.030 0.085 £ 0.050
GraphSAGE 0.712 £ 0.012 | 0.714 +£0.021 | 0.789 +0.018 0.049 £ 0.036 | 0.053+0.042 | 0.172+0.056 | 0.011 +0.011
GIN 0.682 £ 0.021 | 0.691 +£0.022 | 0.741 +0.021 0.077 £ 0.053 | 0.081+0.055 | 0.301+0.080 | 0.011 £ 0.009
C-ENC 0.665 +£ 0.023 | 0.671 £0.031 | 0.732 +0.028 0.030 £ 0.024 | 0.048 +0.026 | 0.633 +0.013 | 0.085+0.016
FairGNN 0.668 +£0.020 | 0.672 +0.026 | 0.735 £ 0.022 0.025 £ 0.021 | 0.042 £ 0.033 | 0.678 +£0.014 | 0.091 £+ 0.021
NIFTY-GCN 0.618 £ 0.035 | 0.640 £ 0.037 0.672 £+ 0.042 0.172 £ 0.110 | 0.199 £ 0.106 0.208 + 0.090 0.105 £+ 0.081
NIFTY-SAGE 0.664 + 0.041 0.682 + 0.073 0.755 £ 0.021 0.031 + 0.027 0.048 + 0.027 0.147 £ 0.071 0.008 + 0.005
GEAR 0.718 £ 0.018 | 0.724 + 0.022 | 0.793 +£0.014 || 0.052 £0.038 | 0.064 + 0.038 | 0.002 + 0.002 | 0.007 £+ 0.006

Bail GCN 0.838 £ 0.017 | 0.782 +0.023 | 0.885+0.018 0.023 £0.019 | 0.075+0.014 | 0.132+0.059 | 0.075+ 0.028
GraphSAGE 0.854 +£0.026 | 0.804 £ 0.032 | 0.905 £ 0.021 0.039 + 0.022 0.086 + 0.039 0.088 + 0.047 0.069 + 0.011
GIN 0.731 £0.058 | 0.656 £0.084 | 0.773 £ 0.069 0.041 £ 0.023 0.065+0.034 | 0.143+0.069 | 0.047 + 0.036
C-ENC 0.842 £ 0.047 | 0.792 +£0.014 | 0.889 +0.033 0.038 + 0.022 0.069 £ 0.020 0.040 + 0.025 0.078 £ 0.024
FairGNN 0.835+0.024 | 0.784 +0.021 | 0.882 + 0.035 0.046 £ 0.013 | 0.074 +0.026 | 0.042 +0.032 | 0.086 +0.016
NIFTY-GCN 0.752 £ 0.065 | 0.669 +0.050 | 0.799 + 0.051 0.019 £ 0.015 | 0.036 £ 0.022 | 0.031+0.017 | 0.025+0.018
NIFTY-SAGE || 0.823 +£0.048 | 0.723 +£0.103 | 0.876 +£0.043 || 0.014 + 0.006 | 0.047 + 0.015 | 0.013 +£0.011 | 0.044 + 0.020
GEAR 0.852 £ 0.026 | 0.800 + 0.031 | 0.896 + 0.016 0.019 £0.023 | 0.058 £ 0.017 | 0.003 £ 0.002 | 0.038 + 0.012

[1] Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., & Li, J.. Learning Fair Node Representations with Graph Counterfactual Fairness. WSDM 2022.
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Recap: Graph Convolutional Network (GCN)

* Key idea: iteratively performing neighborhood aggregation for node representation learning

* Formulation: graph convolution

(I+1) _ (D) D
h, =g W aijh;
JEN;U{i}

- h]@: the representation of node j at [-th layer

— WWO: weight parameters at I-th layer Hidden layer Hidden layer
- a;; = Jarija T weight of the edge between node i w.r.t. node j o ' e
— d;, d;: degree of node i and node j, respectively nput ~V'\ Y\
— N;: neighborhood of node i .« . s | o

.o ] ¢ :\. ’ _’9—’ ¢ :

[1] Kipf, T. N., & Welling, M.. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.
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GCN Analysis: Error Rate vs. Node Degree e

* Observation: low-degree nodes get higher error rate
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— Why is the correlation between error rate and degree bad?
— why should we concern about low-degree nodes?

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Degree Distributions of Real-world Graphs

* Degree distribution is often long-tailed

* GCN might
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— Benefit a relatively small fraction of high-degree nodes
— Overlook a relatively large fraction of low-degree nodes

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C,, ...

i

& Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.

)




GCN Limitations: Degree-related Bias f{lnm!

* Key steps in GCN training
— Learn node representations by message passing
— Train the model parameters by backpropagation

* Question #1: does GCN fail because of the message passing schema?

— Hypothesis #1: high-degree nodes have higher influence to affect the training of GCN
on other nodes

* Question #2: does GCN fail during the backpropagation?
— Only information of labeled nodes can be backpropagated to its neighbors
— Hypothesis #2: high-degree nodes are more likely to connect with labeled nodes

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Hypothesis #1: Influence of High-Degree Nodes e

* Given
— Viabeled: @ set of labeled nodes Vigpeled
~ W the weight of L-th layer in an L-layer GCN

— d;: degree of node i
— X;: input node feature of node i

- hl@: output embeddings of node i learned by the L-layer GCN
* Influence of node i to node k

E [oh{" /0x, | o< Jdid W™
* Influence of node i on GCN training

s= > ||E[on® /o] < yEIW®S] YV

k€V1abeled k€V1abeled

* Remark
— For two nodes i and j, if d; > d;, then S(i) > S(j)
— Node with higher degree will have higher influence on GCN training

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Hypothesis #1: Visualization of Node Influence Z‘lu;n!

 Goal: visualize the influence score S(-) for each node
* Observation: high- degree nodes have hlgher influence score
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* Question #1: how to mitigate the impact of node degree?

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Hypothesis #2: Ratio of Labeled Neighbors f‘m!

* Observation: high-degree nodes are more likely to have labeled neighbors

Cora Citeseer
Jz:.ll|||"| : .IIIII|I||
Degree Degree .
0.04 Pubmed Reddit
jm|I|II|||I|J
Degree 0 15 30 Déérego 75 90
* Question #2: how to ensure enough training signals for low-degree nodes

receive

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Framework [Vl

 Strategy: pre-training + fine-tuning

* Pre-training
— Mitigate the impact of node degree by degree-specific GCN
— Pre-train

* A Bayesian neural network (BNN) with true labels for further use during fine-tuning

* An annotator through label propagation for pseudo-label generation
Degree-Specific GCN ¢ (+)

P(-)

{ Annotator J MM

Pseudo labels

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Degree-specific Graph Convolutional Network (DSGCN) f‘ml

* Key components
— A stack of degree-specific graph convolution layer for embedding learning
— A fully-connected layer for node classification

* Given: the settings of [-th graph convolution layer and
— d;: the degree of node i

- WC%_): the degree-specific weight w.r.t. degree of node j
* Degree-specific graph convolution layer

(1+1) l (DY 1, D
hi —O'( z al](W()+Wd])hJ )

JEN jU{i}
* Question: how to generate the degree-specific weight?

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Degree-specific Weight Generation f{lnm!

* Hypothesis: existence of the complex relations among nodes with different degrees
 Method: weight generation with recurrent neural network (RNN)

* Given
— A RNN
- W,El) = degree-specific weight of degree k at [-th layer

* Weight of degree k + 1 at [-th layer is W,Eﬂzl — RNN (wlgl))

RNN
W, {Wl —(w, — (w —»m)
|

Node Features |

gz/l\x2 ®i§

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Framework [Vl

 Strategy: pre-training + fine-tuning

* Fine-tuning
— Provide pseudo training signals to low-degree nodes for self-supervision
Soft + True Labels (V1°)

() Student
&
—] &L
@
Teacher N
BNN

R

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Fine-Tuning with Self-Supervised Learning Z‘IDEHE?

e Student network: degree-specific GCN (DSGCN)

* Teacher network: Bayesian neural network (BNN)
—Provide additional|softly-labeled set|for self-supervision in student network

Nodes labeled identically by the pseudo-label annotator and BNN
—Exponentially decay the learning rate of labeled and softly-labeled nodes

Soft + True Labels (V%)

by uncertainty score
. . ) () Student ~d(-
* Higher uncertainty score - smaller learning rate ﬁ
Q
— 5:8“\
D) Teacher S

— ]

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Effectiveness Results

e Observations

— Increased label rate implies higher classification accuracy

— Self-supervision provides useful information (i.e., high accuracy when the label rate is

low)
— SL-DSGCN outperforms all baseline methods

Dataset Cora Citeseer PubMed
Label Rate 0.5% % 2% 3% 4% 0.5% 1% 2% 3% 4% 0.03% 0.06% 0.09%
LP 29.05 38.63 53.26 70.31 7347 | 32.10 40.08 42.83 4532 49.01 | 39.01 48.7 56.73
ParWalks 37.01 4140 50.84 58.24 63.78 | 19.66 23.70 29.17 35.61 42.65 | 35.15 40.27 51.33
GCN 35.80  46.00 60.00 71.15 75.68 | 34.50 4394 5442 56.22 58.71 | 47.97 56.68 63.26
DEMO-Net | 33.56 40.05 61.18 7280 77.11 | 36.18 43.35 53.38 56.5 59.85 | 48.15 57.24 62.95
Self-Train 43.83 5245 6336 70.62 77.37 | 42.60 46.79 5292 5837 6042 | 57.67 61.84 64.73
Co-Train 40.99 52.08 64.27 73.04 7586 | 4098 56.51 5240 57.86 62.83 | 53.15 59.63 65.50
Union 45.86 53.59 64.86 73.28 77.41 | 4582 5438 5598 60.41 59.84 | 58.77 60.61 67.57
Interesction | 33.38 49.26 62.58 70.64 77.74 | 36.23 55.80 56.11 58.74 62.96 | 59.70 60.21 63.97
M3S 50.28 58.74 68.04 75.09 78.80 | 4896 53.25 5834 6195 63.03 | 59.31 65.25 70.75
SL-DSGCN | 53.58 61.36 70.31 80.15 81.05 | 54.07 56.68 59.93 62.20 64.45 | 61.15 65.68 71.78

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Fairness Results

e Observations: degree-wise classification accuracy
— SL-DSGCN > DSGNN > GCN for all degrees, especially low degrees

i

(@) (00)
o o

Accuracy
N
o

20

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ..

Cora o0 -
mawm GCN
DSGNN 70 A
SL-DSGNN >

(©
—
-
9
@)
I | )

Deg ree

Citeseer
s GCN
DSGNN
SL-DSGNN

Deg ree

8 10

. & Wang, S.. Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.

I




Overview of Part Ill Z‘lm;ﬂl

Other Fairness on Graphs

l l

Counterfactual Fairness Degree Fairness

NIFTY [ SL-DSGCN ]




Limitations: SL-DSGCN Z‘IDLHE

* SL-DSGCN
— Degree-specific weight: learn degree-specific weights, generated by RNN
— Self-supervised learning: generate pseudo labels for additional training signals

* Limitation 1: additional number of weight parameters
— Weight parameters of RNN for degree-specific weight generation

S . High cost of
 Limitation 2: change(s) to the GCN architecture computational

— Degree-specific weight generator resources
— Self-supervised learning module

* Question: how to mitigate degree-related unfairness without

— Hurting the scalability of GCN
— Changing the GCN architecture?

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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Fairness = Just Allocation of Utility A

* Intuition: utility = resource to allocate

* Expected result: similar utility (accuracy) for all nodes regardless of their
degrees

Allocation of Utility (Accuracy)

ge Accuracy
.
[ ]
[ ]

Average Accuracy

-
Avera

% > - - m - m
Node Degree deg.=1 deg.=2 deg.=3 deg.=4 deg.=max

*‘ter Debiasing

Fair Allocation of Utility (Accuracy)

000 L iuars@rttttt

© ©o
»
H

AR

e o o w

Avera

Average Accuracy
2 &8
S
»
o
$
L ]
31
ge Accuracy
.
[ ]
[

deg.=1 deg.=2 deg.=3 deg.=4 deg.=max

Ni;de Degree
 Question: how to define such fairness?

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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Recap: Rawlsian Difference Principle [yl

* Origin: distributive justice
e Goal: fairness as just allocation of social welfare

“Inequalities are permissible when they maximize [...] the
long-term expectations of the least fortunate group.”

-- John Rawls, 1971

* Intuition: treat utility of GCN as welfare to allocate

— Least fortunate group - group with the smallest utility
— Example: classification accuracy for node classification

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.
E * Justice as fairness » Well-ordered society

* Justice is a virtue of instituitions * Designed to advance the good of its members
* Free persons enjoy and acknowledge the rules * Regulated by a public conception of justice




RawlsGCN: Problem Definition il

* Given
— G = (A X): an undirected graph
— 0: weights of an L-layer GCN
— J: a task-specific loss

* Find: a well-trained GCN that

— Minimizes the task-specific loss
— Achieves a fair allocation of utility for the groups of nodes with the same degree

* Key question: when is the allocation of utility fair?
Fair Allocation of Utility (Accuracy)

Q1.0+ EE) e o000 o000 Q™

e ® o0, .. ..ue .
S e T i Ja— @
8 0.8 4 at%. 8.0 .. [ ] o
<L 0.7 .

Dos -
bn06

L

Average Accuracy

20 30 40 50 _ _ ~ . -
< Node Degree deg.=1 deg.=2 deg.=3 deg.=4 deg.=max

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Fair Allocation of Utility f‘m!

* Key idea: consider the stability of the Rawlsian difference principle

* How to achieve the stability?
— Keep improving the utility of the least fortunate group

* When do we achieve the stability?
— No least fortunate group
— All groups have the balanced utility

* Challenge: non-differentiable utility
— Workaround: use loss function as the proxy of utility
— Rationale: minimize loss in order to maximize utility

* Goal: fair allocation of utility - balanced loss
* Question: why does the loss vary after training the GCN?

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Source of Unfairness A

* Intuition: understand why the loss varies after training

* What happens during training?
— Extract node representations and make predictions
— Calculate the task-specific loss |

— Update model weights 0 by the gradient Z—é & key component for training

* Question: is the unfairness caused by the gradient?

Graph Convolution Graph Convolution

1y Hidden | (@
Input Graph | 5 \3 Representation | 2 \3 | Output
o i RelU - | RelU | — Loss |
o 4 :m-».( > _ /=t :1:-»./ > /e C e/ X
2 3 2 3 2 3

. 0]
Backpropagating 36

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Gradient of Model Weights gllDl;ﬂ!

e Given

— An undirected graph G = (A, X) with A = ﬁ_%(A + I)ﬁ_%
— An arbitrary [-th graph convolution layer

* Weight matrix W

« Hidden representations before activation E& = AH¢-Dw®
— A task-specific loss |

* The gradient of J w.r.t. W

d] T d]
— (1-1)
oWO (H ) OE®

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Unfairness in Gradient A

Column sum of i-th column

Gradient of loss w.r.t. weight Row sum of j-th row
} ~
D (row)
dz (DI z dz(I
(col) _ -1 N __9J dz(1) =2
- 0 = (Bavo [H( i ]D OEDIi,] 9 ( ), plcol) , p(col)
(&0 co co
(row) _ (q-Dr1; .1\ R aJ # + 1550 + I
- 7 = (O, B gt @ © oW
* Intuitions  sampling from j-th neighborhood =1 HB)=1 Highien ImpeTtanEedUs taihighen Uegres
(col) (row) . ) . ]Il(,ml) ]II(,COD Biased direction —
- I;7 7 and I > The directions for gradient descent o 4. 4. (a) = 2 oir direction Favor node a by( ;
. co
— dz (i) and d3(j) > The importance of the direction =~ Nodeb:da(b) =1 . being closer to 5
[Lco > > 2]I(col)
d ngher degree 9 more fOCUS on that direCtion Node degree takes no?effect Node degree is considered”
. . . .~ 7 Coauthor- -Physics ¢ s{ Amazon-Computers | | Amazon-Photo °
* Symmetric normalizationin A PR < ] N
. ) £ 2.5 ° c 6 ."” = [
— Normalize the largest eigenvalue, not degree 9 20 g | & 2] ’
—~ 00 15 ) e |
— High degree in A - high degree in A - a r 82
* Solution: doubly stochastic matrix Apg ke e me b wm e ww b s
Degree in A Degree in A Degree in A

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Doubly Stochastic Matrix Computation Z‘lu;n!

J

owd
— Intuition: enforce row sum and column sum of A to be 1

— Solution: doubly stochastic normalization on A

* How to mitigate unfairness in ?

* Method: Sinkhorn-Knopp algorithm
— Key idea: iteratively normalize the row and column of a matrix
— Complexity: linear time and space complexity
— Convergence: always converge iff. the matrix has total support

 Existence for GCN: the Sinkhorn-Knopp algorithm always finds the unique
doubly stochastic form Apg of A

~ ~_1 ~_1
—-A=D 2(A+1)D >
— D = degree matrix of A + I for a graph A

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: A Family of Debiasing Methods f‘m!

e Gradient computation

Gw ) = (ue)Ar J

dW® DS 9EM

— Key term: A — doubly-stochastic normalization of A

* Proposed methods

— RawlsGCN-Graph: during data pre-processing, compute KDS and treat it as the input of
GCN

— RawlsGCN-Grad: during optimization (in-processing), treat A\DS as a normalizer to
equalize the importance of node influence

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN-Graph: Pre-processing [yl

* Intuition: normalize the input renormalized graph Laplacian into a doubly
stochastic matrix

* Key steps
1. Precompute the renormalized graph Laplacian A
2. Precompute A\DS by applying the Sinkhorn-Knopp algorithm
3. Input KDS and X (node features) to GCN for training

Graph Convolution Graph Convolution
E Hidden Layer : E Hidden Layer
Doubly Stochastic | /.\ E Hidden : /‘\ E
Input Graph A Graph Ay | @ A ' Representation | 2 ! Output
Slnxi;:;:t:r:po i RelU p— RelU ! pr— Loss |
1 1 1 1 1 1
Y O — I — .'/ = _/ == Em-b./ = __/ = coe O -/ X
2 3 2 3 \ 3 | 2 3 | 3 | 2 3
\ 1 ' 1

| : |

@ e | 2 e |

____________________________________ 5
f f Backpropagating %

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN-Grad: In-processing ot

* Intuition: equalize the importance of node influence in gradient computation

* Key steps
1. Precompute the renormalized graph Laplacian A
2. Input A and X (node features) to GCN
3. Compute KDS by applying the Sinkhorn-Knopp algorithm
4. Repeat until maximum number of training epochs

. . a] a-1N\TzT 9] .~

= _— F ------------- 1
* Compute the fair gradient (aw(l))fair (H ) Apg SE@ YSing Aps : Dou:lys:}:hasﬁc :
) ) ) aj 1 —E2 s |
* Update W'" by the fair gradient w0, Sinkhorn-Knopp Algorithm I = I
air  mg ™= (] 1
__GroghComvolution Graph Comvohution__ A\ :
E Hidden Layer E i Hidden Layer E : 1
: : ) : : 1 a]> 1

1 ! Hidden 1 1 .
Input Graph ! 2/.\3 E Representation | 2/.\3 i Out;{ut *(69 fair :
i | | Rely ! o : RelU op Loss J I
1 ! 1 | 1 ! 1 : 1 I

_/ | _/ .ee | [} —
I:I2:I Is:l:l*: ( 3 * :»Dzj 3 *: ( 3 * :* »mi I-s- :—V-f ----- ---I
E 1 | 1

: : : i
(e | vy
9] ) ( aJ ) . aJ
— 5 Backpropagating ( =
f(ﬁw(” fair T W /e 90/ fair

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Effectiveness Results

e Observations

— RawlsGCN achieves the smallest bias

— Classification accuracy can be improved
* Mitigating the bias = higher accuracy for low-degree nodes - higher overall accuracy

Method Coauthor-Physics Amazon-Computers Amazon-Photo
Acc. Bias Acc. Bias Acc. Bias

GCN 93.96 £ 0.367 0.023 £ 0.001 & 64.84 +£0.641 0.353 £0.026 79.58 £1.507 ' 0.646 £+ 0.038

DEMO-Net 77.50 £ 0.566 = 0.084 £ 0.010 26.48 +£3.455 0.456 £ 0.021 39.92 +1.242 0.243 £ 0.013

DSGCN 79.08 £ 1.533 = 0.262 £ 0.075 27.68 £ 1.663 = 1.407 £ 0.685 26.76 +£3.387 = 0.921 £ 0.805

Tail-GNN OOM OOM 76.24 +£1.491 = 1.547 £ 0.670 86.00 +£2.715 = 0.471 + 0.264

AdvFair 87.44 +1.132 = 0.892 £ 0.502 53.50 +£5.362 4.395 £ 1.102 75.80 +£3.563 @ 51.24 + 39.94

REDRESS 94.48 +0.172 | 0.019+0.001 80.36 + 0.206 | 0.455+0.032 89.00 + 0.369 | 0.1§6 +0.030

RAWLSGCN-Graph (Ours) 94.06 +0.196 /7 0.016 £ 0.000 \ 80.16 £ 0.859 /70:121 &+ 0.010 \ 88.58 + 1.116 /7 0.071 + 0.006
RAWLSGCN-Grad (Ours) 94.18 + 0.306().021 + 0.002>74.18 + 2.5306.195 + 0.029>83.7O + 0.6726.186 + 0.068>

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Efficiency Results

I

* Observation: RawlsGCN has the best efficiency compared with other baseline
methods

— Same number of parameters and memory usage (in MB) with GCN
— Much shorter training time (in seconds)

i

Method # Param. | Memory | Training Time
GCN (100 epochs) 48, 264 1,461 13.335
GCN (200 epochs) 48, 264 1,461 28.727
DEMO-Net 11, 999, 830 1,661 9158.5
DSGCN 181, 096 2,431 2714.8
Tail-GNN 2, 845, 567 2,081 94.058
AdvFair 89, 280 1,519 148.11
REDRESS 48, 264 1,481 291.69
RAWLSGCN-Graph (Ours) 48, 264 1,461 11.783
RAwLSGCN-Grad (Ours) 48, 264 1,461 12.924

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H.. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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Related Problem #1: Explainability

* Motivation: how to provide human understandable explanation to a
particular prediction?

* Goal: explain model prediction to non-expert end users
 Example: loan approval

A&

-

graph mining
algorithm

.

Approved

I

Not Approved -,%

-c

male

truth = approved

®

2

: female

2
2

truth = not approved

g Explanation:
High historical

8 gdefault rate

* Related work: GNNExplainer, PGM-Explainer, SubgraphX

* Relationship to fairness: explainability helps interpret whether a model uses
biased information for prediction to end users

[1] Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J.. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurlPS 2019.
[2] Vu, M. N., & Thai, M. T.. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. NeurlIPS 2020.

[3] Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S.. On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.




Related Problem #2: Accountability A

* Motivation: how do mining results relate to graph topology?
e Goal: find influential elements w.r.t. the graph mining results

 Example: loan approval

82
/

6\ graph mining
8 ah algorithm

s-a/
* Related work: AURORA, N2N, NEAR

* Relationship to fairness: accountability helps determine to what extent a
sensitive attribute influences the graph mining results

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
[2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.

Approved Not Approved -g male gg:female
-2 truth = approved 8%

: truth = not approved

-

o
Do

[3] Wang, Y., Yao, Y., Tong, H., Xu, F., & Lu, J.. Auditing Network Embedding: An Edge Influence based Approach. TKDE 2021.




Related Problem #3: Robustness A

* Motivation: why do mining results sensitive to malicious manipulations?

* Goals
— Attack: fool the mining model by a few manipulations on the input graph

— Defense: defend the mining model against the malicious manipulations

* Example: loan approval Approved Not Approved -& mote BB temate By matious use

5-2

-- : truth = approved 88 truth = not approved

graph mining

algorithm Not robust

A malicious user affects
the model to make wrong
predictions

W

728

-
* Related work: Nettack, Mettack, GNN-SVD

* Relationship to fairness: malicious users can
— Manipulate the private sensitive information of other users

— Attack the model to make a fair mining model biased
[1] Zlgner, D., Akbarnejad, A., & Glinnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.

[2] Zlgner, D., & Glinnemann, S.. Adversarial Attacks on Graph Neural Networks via Meta Learning. ICLR 2019.
[3] Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E.. All You Need is Low (Rank): Defending Against Adversarial Attacks on Graphs. WSDM 2020.




Related Problem #4: Privacy Preservation [yt

* Motivation: why can we infer private information by data analysis?
* Goal: prevent the data or mining model from leaking private information

 Example S Technology
WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION @ AOL releases anonymlzed

CAMCORDERS CAMERAS CELLPHONES COMPUTERS HANDHELDS HOMEVIDEO MUSIC PERIPHE
search logs of 650k users

A Face Is Exposed for AOL Searcher No. 4417749

MICHAEL BARBARO TOM ZELLER
= can * People find out the identity
Buried in a list of 20 million Web search queries collected by AOLand 5 print
recently released on the Internet is user No. 4417749. The number was SINOLE PAGE Of one searc h er usin g h er

assigned by the company to protect the searcher’s anonymity, but it —

was not much of a shield. g searc h |Ogs IN a few d ays
No. 4417749 conducted hundreds of
~ . searches over a three-month period on o
topics ranging from “numb fingers” to L EVALER

. “60 single men” to “dog that urinates on

» ) . Je/‘:j everything.”
* Related work: T,, dK-graph, VFGNN

* Relationship to fairness: preserving privacy on sensitive information may help
ensure fairness

[1] Ding, X., Zhang, X., Bao, Z., & Jin, H.. Privacy-Preserving Triangle Counting in Large Graphs. CIKM 2018.
[2] Wang, Y., & Wu, X.. Preserving Differential Privacy in Degree-Correlation based Graph Generation. TDP 2013.

[3] Zhou, J., Chen, C., Zheng, L., Wu, H., Wu, J., Zheng, X., ... & Wang, L.. Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification. arXiv 2020.




Overview of Part IV Z‘lu;ﬂl

Beyond Fairness on Graphs
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Related Problem #1: Explainability e

e Observation: graph neural network (GNN) is not transparent to end users
— Complex neighborhood aggregation + feature transformation
— Nonlinear activation

* Question: can we explain why GNN makes a certain prediction to node?

* Representative solution: GNNExplainer

GNN model training and predictions Explaning GNN’s predictions
/‘{\ “Basketball” i,
" o
ﬁ N o Q’L = “Basketball” @j — “Sailing”

7 Ty

“Sailing” ~4—4—=

[1] Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J.. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurlPS 2019.
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GNNEXxplainer: Overview

* Intuition: find the most informative subgraph and subset of node features
w.r.t. a node’s prediction
— Reason: GNN use feature and local subgraph to learn node representations

 Computation graph: a subgraph with all information about making a
prediction

* Example: 2-layer GCN

Input graph Computation graph

P

2— 3

w—;o
®&
-4

—————————————————

[1] Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J.. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurlPS 2019.
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GNNExplainer: Solution [yl

e Optimization problem

max MI(Y[i,:] (Ge,Xs)) = H(Y[i,:]) — H(Y[i,:]|G = G, X = X,)

— Y[i, : ]: model prediction for node i

— Gs: node i’s sub-computation graph

— X;: node i’s subset of node features

— H(YI[i, :]): constant, entropy of model prediction

— H(Y]i,:]|G = G4, X = X,): conditional entropy given the input subgraph and features

e Surrogate problem
rl{lailp HXY[i,:][A=A, OQOcoM),X=Z+ X.—Z) OF)

— n: number of nodes

— d: number of features

— o: sigmoid function

— A,: adjacency matrix of computation graph

— X_.: node feature matrix of computation graph

— M € R™" F € {0,1}"*%: mask matrices

— Z: random variable sampled from empirical distribution

[1] Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J.. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurlPS 2019.
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Related Problem #2: Accountability A

* Motivation: how do mining results relate to graph topology?
e Goal: find influential elements w.r.t. the graph mining results

 Example: loan approval

/6—8 9
2/

Approved Not Approved 28 male ﬁngemale

@t
A
A o

graph mining
algorithm

What is the cause
of this prediction?

-

-

e
Dy

@ _
D

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
E [2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.




N2N: Formulation Z‘Incﬂl

* N2N: network A to derivative network B
* Intuition: influential - high impact if perturbed

* Edge influence: derivative of f(Y*) w.r.t. the edge
B[i, /] = df (Y")
1= 4AL )]

* Derivative network

( T
of (Y")  (9f(Y") (YO
_ df (Y") _ ] + < A ) — dlag< A ))Ifundlrected
A oF (¥)

0A |

B

if directed

\
s.t. Y" =argminyL(AY,0) key component to calculate

* Question: how to efficiently calculate the partial derivative?

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
E [2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.




Instantiation #1: PageRank

e Basics of PageRank

— Goal: importance of nodes = probability a random walker land on the nodes
— Miningresults: Y =r = (1 — ¢)Qe
c Q=(0-cA)™

* N2N for PageRank

i

~ £ function: £ (Y") = |IrlI3
— Partial derivative
af (Y")
JA
— Time Complexity: O(m); space complexity: O(m + n) 2¢Q'r

= 2¢QTrr”

* m = number of edges X

e n =number of nodes
— Remark

* N2N for PageRank is submodular

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.

af (Y')
0A

I




Instantiation #2: HITS it

* Basics of HITS
— Goal: importance of nodes = (hub scores u, authority scores v)

— Mining results: solve by rank-1 SVD
* u = first left singular vector of A = principal eigenvector of AAT
* v = first right singular vector of A = principal eigenvector of ATA

* N2N for HITS
— fO function: f(Y*) = 1; — 4,

A and A, are the first and second largest eigenvalue of ATA

— Partial derivative rank-2 SVD on A
af (Y*
fa(A ) — 2(u1 u?{A — Uy ugA) = 2(u151VI — uZSZVE) * §,: largest singular
value
— Time Complexity: O(m + n); space complexity: O(m + n) « 5,: second largest

* m = number of edges singular value

e n =number of nodes

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
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Instantiation #3: Spectral Clustering e

* Basics of spectral clustering
— Goal: find k clusters such that-l:

maximize intra-connectivity

minimize inter-connectivity
— Mining results: Y* = U = eigenvectors of with k smallest eigenvalues

* N2N for spectral clustering
— O function: f(Y*) = Tr(UTLU)

— Partial derivative
af (Y")
JA
— Time Complexity: 0(k(m + n) + k?n); space complexity: O(kn + m)

* m = number of edges

= diag(UUT)1,,4, — UUT

e n =number of nodes
* k =number of clusters

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
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Instantiation #4: Matrix Completion A

e Basics of matrix completion
— Goal: learn low-rank matrices for n, users and n, items
— Optimization problem

min  [lprojo (A — UV + A,lIUlIE + 2, VI

* () ={observations}, 1,,, A,, for regularization

* N2N for matrix completion
— fO function: £(Y*) = [|[UVT||%
— Element-wise solution
af (Y")
dAli, j]
* Given mining results U and V, precompute U'U, V'V, C; and D; during optimization
— Amortized time complexity: O(k3(n1 +n,) + kzm) space complexity: O(k?(n, + n,) + m)
* m = number of edges
* 14 = number of users
* N, = number of items
e k =dimension of latent factors

= 2U[i,: [VI'VC V[, : 1" + 2V[j,: JUTUD; " U[i,: ]”

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
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Related Problem #3: Robustness

* Observation: neural networks are sensitive to random perturbation

+.007 %
z Sgn(Ved(0,2.9)  ion(v,,0(0,,9)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

— GNN, as a type of neural networks, makes no exception

* Questions
— How to attack GNN so it makes bad predictions?
— How to defend against such adversarial attacks?

[1] Goodfellow, I. J., Shlens, J., & Szegedy, C.. Explaining and Harnessing Adversarial Examples. ICLR 2015.
E [2] Zlgner, D., Akbarnejad, A., & Glinnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.

[3] Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E.. All You Need is Low (Rank): Defending Against Adversarial Attacks on Graphs. WSDM 2020.
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Attacking GNN: Nettack e

* Goal: attack GNN with unnoticeable perturbation on graph and features

° Optlmlzatlon prOblem Maximize the classification

argmax max [log Z[u, c] — log Z[u, cy1q]| 1oss of  target noce
A,,X’ C=Cold - - -

Training data Model S. L. lG* - argmin L(A,, X’, 9) Measure impact after GCN re-

training

0 . . L
, 7 — GC : K, @ s f
BEH H TOQ — _ N(A,, X’, 9*) or evasion attack, 0 is fixed
0 raining

(A,, X,) =~ (A’ X) Unnoticeable attack
”A — A,”O -+ ”X — X,”O S A Budgeted attack

Perturbed image

Perturbation
[1] Zlgner, D., Akbarnejad, A., & Glinnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.
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Defending GNN: GNN-SVD

Motivation: GNN is vulnerable to adversarial attack
— How to make GNN more robust?

Observation: Nettack is a high-rank attack
— High-rank spectrum (i.e., small singular values) will change after attack

Key idea: low-rank approximation can resist such attack

Steps
— Take a truncated SVD of the input graph structure
— Reconstruct the graph with top-k singular values and their singular vectors

— Output the reconstructed graph as vaccinated graph

(1) (2)
SVD reveals the Low Rank Approximation
high-rank retains only useful
Nettack attack spectrum graph information Vaccinated Graph

- FH [H @m

target node

[1] Entezari, N., Al-Sayouri, S. A., Darvishzadeh, A., & Papalexakis, E. E.. All You Need is Low (Rank): Defending Against Adversarial Attacks on Graphs. WSDM 2020.
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Fairness on Dynamic Graphs e

* Motivation: networks are dynamically changing over time
— New nodes: new accounts on social network platforms (e.g., Facebook, Twitter)
— New edges: new engagements among people on social networks (e.g., follow, retweet)

 Trivial solution: re-run the fair graph mining algorithm from scratch at each timestamp

° . ° =0 = =2

* Limitations t = t
— Time-consuming to re-train the mining model s K1 &
-\ -\ N

— Fail to capture the dynamic fairness-related information

.9/.

/

e Do
.0/.

/

> )

 Questions

— How to efficiently update the mining results and
ensure the fairness at each timestamp?

— How to characterize the impact of dynamics over the trai”i"g‘ trai“i”g‘ trai""‘!
bias measure?

Fair Fair Fair

N ”

\
New node

GNN GNN GNN




Fairness on Dynamic Graphs

* Possible method: fair graph mining model with time-dependency learning module
— Efficient update: dynamic tracking module
— Temporal information learning: gated recurrent unit (GRU)

t=0 t=1 t=2
- - -
N N N
- 2 S.® % J} New edge
-\‘ -\‘ -\‘
lgd/New edge 2/

training trajning _ training
Time-dependency Time-dependency
. . | .
Fair learning Fair earning Fair
GNN GNN

GNN

b



Benchmark and Evaluation Metrics f{lnm!

* Motivation: there is no consensus on the experimental settings for fair graph
mining
— Which graph(s) we should use for fair graph mining?
— What could be the sensitive attribute(s) for each dataset to be used?
— What should be the evaluation metric for each type of fairness on graphs?
— How to split the dataset for training, validation and test?

* Consequences
— Different settings for different research works
— Hardly fair comparison among debiasing methods

e Call: the community should work together toward
— A consensus on the experimental settings
— A benchmark for fair comparison of different methods

i




Fairness vs. Other Social Aspects et

* Overview: trustworthy graph mining
Trustworthy Graph Mining

|
S

Accountability

Robustness ) Fairness Well-being

* Motivation: tensions among the social aspects

* Fairness vs. privacy

— Is fairness related to privacy preservation on graphs?
— Will preserving privacy help ensuring fairness, or vice versa?

[1] Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., & Pei, J.. Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv.
E [2] Dai, E., Zhao, T., Zhu, H., Xu, J., Guo, Z,, Liu, H., ... & Wang, S.. A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness,

and Explainability. arXiv.




Fairness vs. Explainability [yt

* Research questions
— Are the existing debiasing methods transparent?
— If not, can we open the black box of debiasing methods on graphs?

 Example: loan approval

8-2
/

' graph mining ' A

8 algorithm ‘ ‘

@
N
[ % 8 Explanation:
o 8 ah (1) High historical default rate
dh v (2) Decision independent to gender

Approved Not Approved

O Explanation:

.

(1) Low credit history
(2) Decision independent to gender

!

2 2 i
‘%: e ‘g:tmthzappmved Fair a.nd transparent. rjesult
* Fair: equal true positive rate
28: female %8 truth = not approved * Transparent: explanation on the usage of sensitive

information




Fairness vs. Robustness

* Research questions

— Will existing adversarial attack strategies affect the fairness of mining model?
— Are the existing debiasing methods robust against random noise and adversary?

 Example: loan approval

graph mining
algorithm

% male -8 female % malicious user
g truth = approved %8 truth = not approved

Approved Not Approved
N
] N

aa A %

- é/

!

Fair and robust result
Fair: equal true positive rate
Robust: high accuracy

)



Takeaways D!

* Introduction to algorithmic fairness on graphs
— Background, challenges, related problems

Group fairness on graphs
— Classic graph mining: ranking, clustering
— Advanced graph mining: node embedding, graph neural networks

Individual fairness on graphs
— Laplacian regularization-based method, ranking-based method

Other fairness on graphs
— Counterfactual fairness, degree fairness

Beyond fairness on graphs
— Explainability, accountability, robustness

Future directions
— Fairness on dynamic graphs
— Benchmark and evaluation metrics for algorithmic fairness on graphs
— Interplay between fairness and other aspects of trustworthiness

i




Resources A

e Datasets: https://github.com/yushundong/Graph-Mining-Fairness-Data

* Surveys
— Zhang, W., Weiss, J. C., Zhou, S., & Walsh, T.. Fairness Amidst Non-IID Graph Data: A Literature
Review. arXiv preprint arXiv:2202.07170.

— Dong, Y., Ma, J., Chen, C., & Li, J.. Fairness in Graph Mining: A Survey. arXiv preprint arXiv:2204.09888.

— Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., & Pei, J.. Trustworthy Graph Neural Networks: Aspects,
Methods and Trends. arXiv preprint arXiv:2205.07424.

— Daij, E., Zhao, T., Zhu, H., Xu, J., Guo, Z,, Liu, H., ... & Wang, S.. A Comprehensive Survey on Trustworthy
Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. arXiv preprint
arXiv:2204.08570.

* Related tutorials
— Fair Graph Mining
e http://jiank2.web.illinois.edu/tutorial/cikm21/fair graph mining.html

— Fairness in Networks
» https://algofairness.github.io/kdd-2021-network-fairness-tutorial/



https://github.com/yushundong/Graph-Mining-Fairness-Data
http://jiank2.web.illinois.edu/tutorial/cikm21/fair_graph_mining.html
https://algofairness.github.io/kdd-2021-network-fairness-tutorial/
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