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ABSTRACT
Graph Neural Networks (GNNs) excel in diverse tasks, yet their ap-

plications in high-stakes domains are often hampered by unreliable

predictions. Although numerous uncertainty quantification meth-

ods have been proposed to address this limitation, they often lack

rigorous uncertainty estimates. This work makes the first attempt

to introduce a distribution-free and model-agnostic uncertainty

quantification approach to construct a predictive interval with a

statistical guarantee for GNN-based link prediction. We term it as

conformalized link prediction. Our approach builds upon conformal

prediction (CP), a framework that promises to construct statisti-

cally robust prediction sets or intervals. There are two primary

challenges: first, given dependent data like graphs, it is unclear

whether the critical assumption in CP — exchangeability — still

holds when applied to link prediction. Second, even if the exchange-

ability assumption is valid for conformalized link prediction, we

need to ensure high efficiency, i.e., the resulting prediction set or

the interval length is small enough to provide useful information.

To tackle these challenges, we first theoretically and empirically

establish a permutation invariance condition for the application of

CP in link prediction tasks, along with an exact test-time coverage.

Leveraging the important structural information in graphs, we then

identify a novel and crucial connection between a graph’s adherence

to the power law distribution and the efficiency of CP. This insight

leads to the development of a simple yet effective sampling-based

method to align the graph structure with a power law distribution

prior to the standard CP procedure. Extensive experiments demon-

strate that for conformalized link prediction, our approach achieves

the desired marginal coverage while significantly improving the

efficiency of CP compared to baseline methods.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Graph Neural Networks, Uncertainty Quantification, Conformal

Prediction, Link Prediction

ACM Reference Format:
Tianyi Zhao, Jian Kang, and Lu Cheng. 2024. Conformalized Link Predic-

tion on Graph Neural Networks. In Proceedings of the 30th ACM SIGKDD

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’24, August 25–29, 2024, Barcelona, Spain.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0490-1/24/08.

https://doi.org/10.1145/3637528.3672061

Conference on Knowledge Discovery and Data Mining (KDD ’24), August
25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3637528.3672061

1 INTRODUCTION
GNNs have emerged as a versatile and powerful model that can

operate on graph-structured data, such as social networks [11],

molecular graphs [22], and knowledge graphs [34]. Their ability to

model complex relationships in graph-structured data has propelled

them to the forefront of machine learning research. However, one

of the major challenges in applying GNNs to real-world problems

is the lack of reliable uncertainty estimates for their predictions.

A series of recent research has shown mixed results regarding the

performance of GNNs [19, 33, 44]. For example, when used in high-

stakes domains such as drug discovery and finance, GNN-based link

prediction may not be trusted due to its miscalibrated confidence.

This work studies uncertainty quantification for GNN-based link

prediction. One prominent approach is to construct prediction sets

or intervals that provide information about a plausible range of

values within which the true outcome is likely to fall. Numerous

methods have been put forth to achieve this goal [19, 28, 44, 51].

Nevertheless, these methods fall short in terms of offering both

theoretical and empirical assurances concerning their validity. Con-

formal prediction (CP) [43] has emerged as a promising framework

to tackle these limitations and has been applied to various domains,

such as natural language processing [14, 38, 40], causal inference

[31], computer vision [4, 6, 7] and drug discovery [23]. It is a frame-

work that promises to construct prediction sets or intervals while

ensuring a statistically robust coverage guarantee. That is, given

a user-specified miscoverage rate 𝛼 ∈ (0, 1), CP uses a so-called

calibration set of data to produce prediction intervals (often for re-

gression) or prediction sets (often for classification) for the test data,

and the resulting set or interval covers the true label or value with

probability at least 1−𝛼 . Or, the constructed prediction sets/intervals
are theoretically proven to have a guarantee that they will only

miss the test outcomes in at most an 𝛼 fraction of cases.

Further, CP offers the advantage of being compatible with any

black-box machine learning model, under the condition that the

data follows the principle of statistical exchangeability (e.g., the

calibration and test data are exchangeable in conformal prediction).

This flexibility alleviates the need for the often violated assumption

of independent and identically distributed (i.i.d.) data, particularly

common in graph-structured datasets. With its simple formulation,

weaker assumption, strong theoretical guarantee and distribution-

free nature, a few recent efforts [9, 21, 50] have explored to use CP

to quantify uncertainty for graph-structured data, with a particular

emphasis on tasks like node classification. Complementary to these

prior works, we explore the realm of CP for link prediction, which

is related yet inherently different from node classification tasks. To
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illustrate the importance, consider the GNN-based recommender

system in a pharmacy store that suggests Over-the-Counter (OTC)

medicine to patients. When the system over-confidently recom-

mends inappropriate medicine, patients can be exposed to high

risks of adverse effects. In this case, the rigorous prediction interval

produced by CP under a predefined error rate (say 10%) can help

assess the reliability of the system. In this case, a larger interval

indicates higher uncertainty, highlighting the need for caution and

possibly consulting clinicians for a more informed decision.

In this work, we study a novel problem of conformalized link
prediction (CLP). A central challenge arises from the question of

whether the critical condition of exchangeability still holds when

performing CP at the edge level. In response to this challenge, this

work first seeks to thoroughly examine the validity of the exchange-

ability assumption in GNN-based link prediction. Particularly, we

formally define this problem within an inductive setting, where cal-

ibration and test edges are excluded from the training process. We

then theoretically examine the exchangeability between calibration

and test data for link prediction, i.e., whether the distributions of

calibration and test data are exchangeable under any permutation.

In CP, when the exchangeability assumption is satisfied, the cov-

erage is statistically guaranteed. However, we also need to ensure

that the prediction set or the interval length is small enough to be

informative. For example, CP can output a trivial interval or set that

includes all possible labels, resulting in useless predictions. Existing

approaches (e.g., [3, 49]) for improving efficiency are inapplicable

due to the unique features of graph data.

To address this challenge, we propose to leverage structural prop-

erties, one of the most important and unique features in graph data.

Graph structures provide vital information and have been shown

extremely useful for a variety of graph-related tasks, such as node

classification [45], link prediction [47], and graph classification [29].

Therefore, we ask whether graph structures can provide additional
information to improve the efficiency of standard CP for CLP? One
particular type of structural information we investigate is the node

degree and its distribution. As a fundamental property in graphs,

node degree reflects the connectivity of a node within the graph and

provides valuable insights into the structure, function, and behavior

of networks [36]. Informed by this, we conduct a series of empirical

analyses and identify an interesting finding: a greater adherence

to the power law in the node degree distribution typically leads to

significantly increased CP efficiency (Figure. 1). This inspiration
drives us to propose a simple approach for harmonizing the degree

distribution of a graph with a power-law distribution for more effi-

cient CLP. This is achieved by selectively removing specific edges

and utilizing the remaining edges for the CLP process.

In summary, our main contributions are:

• We propose a novel problem of CLP on GNNs and theo-

retically establish the condition of exchangeability for CLP,

affirming the validity of employing CP for CLP.

• We develop a novel pipeline for efficient CLP via a simple

sampling-based approach guided by the fundamental power

law distribution of node degrees.

• Weevaluate the proposedmethod on real-world graph datasets

for the link prediction task. The experimental results suggest

that our approach can significantly improve CP’s efficiency,

especially when the degree distribution in a graph is less

adherent to the power law distribution.

2 PRELIMINARY
Notation. Consider a graph G = (V, E𝑝 ) with 𝑀 nodes, where

V = {1, · · · , 𝑀} and E𝑝 = {𝑒1, · · · , 𝑒𝑁 } ⊆ V × V . 𝑋 ∈ R𝑀×𝑑
denotes the node feature matrix. Let E𝑝 and E𝑛 be the positive links
set and non-existent links set, respectively. The latter is constructed

by randomly selecting the same number of non-existent links as

the number of positive links from the graph. E = E𝑝 ∪ E𝑛 =

{𝑒1, · · · , 𝑒2𝑁 }. Each 𝑒 ∈ E is represented as a node pair 𝑒 = (𝑢, 𝑣)
with nodes 𝑢 and 𝑣 as its two endpoints.

The Link Prediction Problem. Link prediction with GNNs is

typically based on representation learning [1, 26, 37]. Particularly,

we start by obtaining the node representations. Then we derive

edge representations based on the learned node representations,

often using operations like the dot product between two node rep-

resentations. These edge representations can then be employed to

estimate the likelihood of a link between them. GNNs are employed

to acquire node representations that encode both the topological

structure and the feature information associated with each node.

We measure the performance of a link prediction model by how

well it can rank the true links higher than the false ones in the

test set. A common metric for this is the ratio of true links that

are among the top 𝐾-ranked links by the model [20]. It is expected

that the ranking of scores for positive edges will surpass that of

non-existent edges.

Conformal Prediction.Conformal prediction (CP) is a distribution-

free framework in machine learning and statistical modeling that

assigns valid confidence estimates or prediction intervals to the

output of predictive models [43]. One of the most common CP

methods is split CP [30]. It acts as a wrapper around a trained base

model and uses a set of exchangeable held-out (or calibration) data

to construct prediction intervals.

Given an exchangeable set of held-out calibration data {(𝑋𝑖 , 𝑌𝑖 )}𝑛𝑖=1,
the goal of CP is to construct a marginal distribution-free predic-

tion interval𝐶 (𝑋𝑛+1) ∈ R that is likely to encompass the unknown

response 𝑌𝑛+1 with a specified miscoverage rate 𝛼 ∈ [0, 1]:

P{𝑌𝑛+1 ∈ 𝐶 (𝑋𝑛+1)} ≥ 1 − 𝛼. (1)

To achieve this, we first define a non-conformity score function

𝑉 : X×Y → R, whichmeasures the calibration of the prediction for

a specific sample, i.e., how true value𝑦 conforms tomodel prediction

at 𝑥 . For each (𝑋𝑖 , 𝑌𝑖 ) in the calibration set, we first compute the

non-conformity score 𝑉 (𝑋𝑖 , 𝑌𝑖 ). Next, we define 𝑞 to be the ⌈(𝑛 +
1) (1 − 𝛼)⌉/𝑛-th empirical quantile of {𝑉 (𝑋1, 𝑌1), · · · ,𝑉 (𝑋𝑛, 𝑌𝑛)}.
The prediction interval can then be constructed as follows:

𝐶 (𝑋𝑛+1) = {𝑦 ∈ Y : 𝑉 (𝑋𝑖 , 𝑦) ≤ 𝑞}. (2)

The Conformalized Quantile Regression (CQR) method [39] dis-

tinguishes itself as a widely recognized CP technique for creating

prediction intervals due to its simplicity and effectiveness. To apply

CQR, we divide the data into a training set D1 and a calibration

set D2. Next, we employ a quantile regression function denoted

as A to fit two conditional quantile functions, namely 𝜇̂𝛼/2 and
𝜇̂
1−𝛼/2, utilizing the training set. Subsequently, we compute the
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non-conformity scores using the calibration set:

𝑉𝑖 = max{𝜇̂𝛼/2 (𝑋𝑖 ) − 𝑌𝑖 , 𝑌𝑖 − 𝜇̂1−𝛼/2 (𝑋𝑖 )}, (3)

for each (𝑋𝑖 , 𝑌𝑖 ) ∈ D2. The scores are then used to calibrate the

plug-in prediction interval

𝐶 (𝑥) = [𝜇̂𝛼/2 (𝑥), 𝜇̂1−𝛼/2 (𝑥)] . (4)

More specifically, let 𝑞 be the ⌈(|D2 | + 1) (1−𝛼)⌉/|D2 |-th empirical

quantile of {𝑉 (𝑋1, 𝑌1), · · · ,𝑉 (𝑋 |D2 | , 𝑌|D2 | )}, the prediction inter-

val for a new input data 𝑋 ′ is then constructed as

𝐶 (𝑋 ′) = [𝜇̂𝛼𝛼/2 (𝑋
′) − 𝑞, 𝜇̂𝛼

1−𝛼/2 (𝑋
′) + 𝑞] . (5)

3 CONFORMALIZED LINK PREDICTION
We begin this section by formulating and investigating the validity

of conformalized link prediction (CLP), i.e., whether the exchange-

ability assumption holds for GNN-based link prediction. It should

be noted that this is a critical step for ensuring the statistical guar-

antee of CP. Yet, there is no prior work that formally studies CP in

the context of link prediction, and the adaptation of CP to CLP is

nontrivial. Unlike [21], which explored CP for node classification in

a transductive setting, our work establishes CP for link prediction

within an inductive learning framework. Then we introduce how

to leverage Conformalized Quantile Regression (CQR) [39] for CLP,

and further investigate the relationship between the efficiency of

CP and the graph’s structural property. Based on the empirical anal-

ysis, we propose a simple and effective sampling strategy guided by

the fundamental power law distribution of node degrees to improve

the efficiency of CLP.

3.1 Exchangeability and Validity of
Conformalized Link Prediction

The link prediction problem discussed here naturally fits into an

inductive learning framework. To elaborate, we initially divide the

set of links, denoted as E, into distinct subsets: the training set

(D𝑡𝑟𝑎𝑖𝑛), the validation set (D𝑣𝑎𝑙 ), the calibration set (D𝑐𝑎𝑙𝑖𝑏 ), and
the test set (D𝑡𝑒𝑠𝑡 ). Each of these subsets contains an equal number

of positive links (indicating existing connections) and negative

links (indicating non-existent connections). The GNNmodel is then

trained on a subgraph denoted as G′ = (V, E′), where E′ = E𝑝 ∩
(D𝑡𝑟𝑎𝑖𝑛 ∪D𝑣𝑎𝑙 ). In other words, the model can access information

about all the nodes and their associated features, but it only has

access to a portion of the positive links that belong to the training

and validation link sets. The objective is to train the model to

predict the edges that have not been observed between pairs of

nodes. During the training process, we assign label 1 (or 0) to

represent positive (or non-existent) edges. The GNN model begins

by generating embeddings for edges through message passing and

neighborhood aggregation. Subsequently, it produces prediction

scores for all edges, which can be used to determine the likelihood

of an edge existing between node pairs.

Since the model lacks access to the labels (indicating the status)

of links inD𝑐𝑎𝑙𝑖𝑏∪D𝑡𝑒𝑠𝑡 , any link from this combined set is equally

likely to be part of either D𝑐𝑎𝑙𝑖𝑏 or D𝑡𝑒𝑠𝑡 . In other words, different

choices of calibration sets do not alter the non-conformity scores

for any given link. Using GNNs for link prediction on graphs thus

adheres to the following permutation invariance condition: For

any permutation 𝜋 of D𝑐𝑎𝑙𝑖𝑏 ∪ D𝑡𝑒𝑠𝑡 , the non-conformity score 𝑉

satisfies the following:

𝑉 (𝑒,𝑦; {(𝑒𝑖 , 𝑦𝑖 )}𝑒𝑖 ∈D𝑡𝑟𝑎𝑖𝑛∪D𝑣𝑎𝑙
, {𝑒𝑖 }𝑒𝑖 ∈D𝑐𝑎𝑙𝑖𝑏∪D𝑡𝑒𝑠𝑡

,G′)
= 𝑉 (𝑒,𝑦; {(𝑒𝑖 , 𝑦𝑖 )}𝑒𝑖 ∈D𝑡𝑟𝑎𝑖𝑛∪D𝑣𝑎𝑙

, {𝑒𝜋 (𝑖 ) }𝑒𝜋 (𝑖 ) ∈D𝑐𝑎𝑙𝑖𝑏∪D𝑡𝑒𝑠𝑡
,G′) .

This states that permuting the order of links within the calibration

and test sets does not alter their corresponding non-conformity

scores. Therefore, the exchangeability of D𝑐𝑎𝑙𝑖𝑏 ∪ D𝑡𝑒𝑠𝑡 is natu-
rally satisfied. To this end, we can present the following proposition,

demonstrating that the non-conformity scores exhibit exchange-

ability with respect to link prediction.

Proposition 3.1. In the described inductive setting for link predic-
tion, where the model has access to all node information and features
but only a subset of positive links from training and validation sets
during training, the unordered set of the scores [𝑉𝑖 ]𝐾+𝐿𝑖=1

is fixed, where
|D𝑐𝑎𝑙𝑖𝑏 | = 𝐾 , |D𝑡𝑒𝑠𝑡 | = 𝐿, and 𝑉𝑖 denotes the non-conformity score
of link 𝑒𝑖 ∈ D𝑐𝑎𝑙𝑖𝑏 ∪ D𝑡𝑒𝑠𝑡 . That is, the non-conformity scores are
exchangeable for all 𝑒 ∈ D𝑐𝑎𝑙𝑖𝑏 ∪ D𝑡𝑒𝑠𝑡 .

Proof. Let 𝑓 (·) be the GNN model trained on the subgraph G′
which produces the node embeddings 𝐻 . Let 𝑔(·) denote the func-
tion that produces edge embeddings, i.e., 𝑧𝑒𝑖 = 𝑔(𝐻𝑢𝑖 , 𝐻𝑣𝑖 ) for edge
𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖 ). ℎ(·) is the function that produces the prediction scores

based on the edge embeddings, i.e., 𝑠𝑖 = ℎ(𝑧𝑒𝑖 ). Let 𝑣𝑖 = 𝑉 (𝑠𝑖 , 𝑦𝑖 ) be
the non-conformity score for 𝑒𝑖 ∈ D𝑐𝑎𝑙𝑖𝑏∪D𝑡𝑒𝑠𝑡 . 𝑓 (·),𝑔(·), andℎ(·)
are fixed after training. Thus it is clear that permutating the order

of 𝑒 ∈ D𝑐𝑎𝑙𝑖𝑏 ∪D𝑡𝑒𝑠𝑡 will not change the resulting non-conformity

scores for 𝑒𝑖 ∈ D𝑐𝑎𝑙𝑖𝑏 ∪ D𝑡𝑒𝑠𝑡 . The sets of non-conformity scores

before and after permutation are exactly the same:

{𝑣1, · · · , 𝑣𝐾+𝐿} = {𝑣𝜋 (1) · · · 𝑣𝜋 (𝐾+𝐿) }.
□

3.2 CQR for Conformalized Link Prediction
With the fundamental exchangeability assumption satisfied, we

now introduce how CP can be better leveraged to quantify the

uncertainty for the link prediction task. Link prediction is framed

as a task where a model is trained to produce prediction scores for

all missing edges [20]. The expectation is that the model will rank

the prediction scores for positive test edges higher than those for

negative edges. In the context of uncertainty quantification for link

prediction, it is more appropriate to formulate it as a regression

problem and construct a prediction interval instead of viewing it as

a binary classification process and creating a prediction set for each

unobserved edge. We therefore propose to leverage Conformalized

Quantile Regression (CQR) [39] which provides prediction intervals

that come with a provable guarantee of coverage probability. For

link prediction, we adapt the non-conformity score in CQR to the

following:

𝑉 (𝑒,𝑦) = max{𝜇̂𝛼/2 (𝑧𝑒 ) − 𝑦,𝑦 − 𝜇̂1−𝛼/2 (𝑧𝑒 )}, (6)

where 𝜇̂𝛾 (·) denotes the 𝛾-th conditional quantile function of the

edge embeddings 𝑧𝑒 . The prediction interval is then constructed as

𝐶 (𝑒) = [𝜇̂𝛼/2 (𝑧𝑒 ) − 𝑞, 𝑞 − 𝜇̂1−𝛼/2 (𝑧𝑒 )] . (7)

Based on Proposition 3.1, we prove that the validity of coverage

𝐶 (𝑒) is guaranteed.
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Theorem 3.2. Given that {𝑣𝑖 }𝐾+𝐿𝑖=1
is exchangeable, with error rate

𝛼 ∈ (0, 1) and 𝑞 = Quantile(𝑣1, · · · , 𝑣𝐾 ; ⌈(𝐾+1) (1−𝛼)/𝐾⌉), the con-
structed prediction interval for edge 𝑒𝐾+𝑗 is𝐶 (𝑒𝐾+𝑗 ) = [𝜇̂𝛼/2 (𝑧𝐾+𝑗 )−
𝑞, 𝑞 − 𝜇̂

1−𝛼/2 (𝑧𝐾+𝑗 )], 𝑗 = {1, · · · , 𝐿}, satisfying
P{𝑦𝐾+𝑗 ∈ 𝐶 (𝑒𝐾+𝑗 )} ≥ 1 − 𝛼.

Proof. Let 𝑣𝐾+1 be the non-conformity score for the test link

(𝑒𝐾+1, 𝑦𝐾+1). We have

P{𝑦𝐾+1 ∈ 𝐶 (𝑒𝐾+1)} = P{𝑣𝐾+1 ≤ 𝑞}.
Without loss of generality, we assume that {𝑣𝑖 }𝐾𝑖=1 is sorted in

ascending order, i.e., 𝑣1 ≤ 𝑣2 ≤ · · · ≤ 𝑣𝐾 . Since {𝑣𝑖 }𝐾+1𝑖=1
are ex-

changeable, we have

P{𝑣𝐾+1 ≤ 𝑣𝑡 } =
𝑡

𝐾 + 1 (1 ≤ 𝑡 ≤ 𝐾)

that is, 𝑣𝐾+1 is equally likely to fall in anywhere between 𝑣1, · · · , 𝑣𝐾 .
Thus the following inequality holds:

P{𝑣𝐾+1 ≤ 𝑞} = P{𝑣𝐾+1 ≤ 𝑣 ⌈ (𝐾+1) (1−𝛼 ) ⌉ }

=
⌈(𝐾 + 1) (1 − 𝛼)⌉

𝐾 + 1
≥ 1 − 𝛼.

□

Theorem 3.2 suggests that the coverage of the prediction interval

in CLP is at least 1 − 𝛼 with a rigorous statistical guarantee.

3.3 Efficiency and Structural Property
In addition to the coverage rate, another important evaluation met-

ric for CP is efficiency, i.e., the size or the length of the prediction

sets or intervals. A smaller size or length suggests a more infor-

mative prediction set or interval. To assess the efficiency of CLP, a

simple approach is to measure the average length of the prediction

interval at a given error rate 𝛼 . A shorter interval length suggests

an improved efficiency.

Traditional approaches [4, 46] for improving CP efficiency can-

not be directly applied as they are for non-graph data (e.g., tabular

data or images), leaving the unique characteristics (e.g., structural

properties) of graph data largely unexplored. To improve the ef-

ficiency of CLP, we explore its potential connection to the graph

structural information. Identifying crucial graph data properties

that affect graph learning is an ongoing challenge [48]. Here we

specifically focus on node degree distribution, which reflects node

connectivity and provides valuable insights into network structure

and behavior. It is widely recognized as a significant factor impact-

ing graph model performance [32, 48]. Other structural properties

such as clustering coefficient and connectivity could be valuable to

explore in future research. Next, we reveal a novel and interesting

connection between the efficiency of the CLP and the node degree

distribution of the underlying graph structure.

We commence our study with a series of experiments on semi-

synthetic graphs that exhibit varying degrees of conformity to the

power law, as outlined in [10]. These graphs are generated using the

method introduced in [53]. Specifically, given a real-world graph,

we create 𝑛 cliques within a given graph by randomly selecting𝑚
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Figure 1: Simulation study on a semi-synthetic dataset gen-
erated from the Amazon Computers dataset [41].

nodes and connecting all nodes within each clique. By adjusting the

values of𝑚 and 𝑛, we can generate synthetic graphs with different

levels of conformity to the power law. The Kolmogorov-Smirnov

(KS) statistic [8] is employed as a metric to quantify the extent

of conformity, where a lower value indicates a higher degree of

conformity to the power law. Subsequently, we carry out simulation

experiments based on the Amazon Computers dataset [41].

Specifically, we select (𝑚,𝑛) from {(25, 20), (50, 20), (75, 20), (100,
20), (150, 20)}. For each combination of (𝑚,𝑛), we create five syn-
thetic graphs and apply the CLP procedure described in Sec. 3.2. We

then record the average length of the prediction interval as a mea-

sure of CP efficiency. To represent the performance of a particular

(𝑚,𝑛), we calculate the mean KS statistic value by averaging the

KS statistic values of the five synthetic graphs with the same (𝑚,𝑛).
The simulation results are presented in Figure 1, in which the hor-

izontal axis value is the averaged KS statistic. The trend is evident:

graphs exhibiting higher KS statistic values typically display larger

average prediction intervals, suggesting lower efficiency in CLP –

that is, less informative prediction intervals. This notable finding

inspires us to explore the potential enhancement of CP efficiency

when conducting CLP by utilizing edges with a degree sequence

that closely aligns with the power law distribution.

3.4 Sampling-based CQR for Improved
Efficiency

Based on the findings above, we propose a simple yet effective

sampling-based method for enhanced CP efficiency to quantify the

uncertainty in GNN-based link prediction.

Our core idea is to bring the degree distribution of the exist-

ing graph into closer alignment with a power-law distribution, a

modification that we believe will enhance the efficiency of CLP,

as supported by our empirical research. One approach to achieve

this is by selectively sampling specific edges such that the resulting

node degree distribution closely follows the power-law distribu-

tion. We then use these sampled edges to compute nonconformity

scores. Therefore, the first step involves obtaining an ideal degree

sequence that adheres to a specific power-law distribution, serving

as a reference. Subsequently, the sampling procedure is carried out,

taking cues from this ideal degree sequence. The sampling process

is detailed below.
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Algorithm 1: Conformalized Link Prediction.

Input:
Graph G = (V, E𝑝 ) and links set E.
Miscoverage level 𝛼 ∈ (0, 1) .
Node embedding algorithm F , edge embedding

algorithmZ, edge scoring algorithmH .

Quantile regression algorithm A.

Output:
Prediction interval 𝐶 (𝑒) for each 𝑒 ∈ D𝑡𝑒𝑠𝑡 .

1 Split links set into disjoint sets D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙 ,D𝑐𝑎𝑙𝑖𝑏 , D𝑡𝑒𝑠𝑡 ;
2 Construct subgraph G′ = (V, E′), where
E′ = E𝑝 ∩ (D𝑡𝑟𝑎𝑖𝑛 ∪ D𝑣𝑎𝑙 );

// Train the base model

3 while training do
4 Fit node embedding function: 𝑓 (·) ← F (G′);
5 Fit edge embedding function:

𝑧 (·) ← Z({(𝑓 (𝑢), 𝑓 (𝑣)) |𝑒 = (𝑢, 𝑣) ∈ D𝑡𝑟𝑎𝑖𝑛 ∪ D𝑣𝑎𝑙 });
6 Fit edge scoring function:

ℎ(·) ← H({(𝑧 (𝑒), 𝑦𝑒 ) |𝑒 ∈ D𝑡𝑟𝑎𝑖𝑛 ∪ D𝑣𝑎𝑙 });
7 end
// Sampling

8 D′
𝑡𝑟𝑎𝑖𝑛

,D′
𝑣𝑎𝑙
,D′

𝑐𝑎𝑙𝑖𝑏
← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙 ,D𝑐𝑎𝑙𝑖𝑏 );

// CLP

9 Fit conditional quantile functions:

{𝜇̂𝛼/2 (·), 𝜇̂1−𝛼/2 (·)} ← A({(𝑧 (𝑒), 𝑦𝑒 ) |𝑒 ∈ D′𝑡𝑟𝑎𝑖𝑛∪D
′
𝑣𝑎𝑙
});

10 Compute the non-conformity score

𝑉 (𝑒,𝑦𝑒 ) = max{𝜇̂𝛼/2 (𝑧𝑒 ) − 𝑦𝑒 , 𝑦𝑒 − 𝜇̂1−𝛼/2 (𝑧𝑒 )} for each
𝑒 ∈ D′

𝑐𝑎𝑙𝑖𝑏
;

11 Compute 𝑞, the ⌈(|D′
𝑐𝑎𝑙𝑖𝑏
| + 1) (1 − 𝛼)/|D′

𝑐𝑎𝑙𝑖𝑏
|)⌉-𝑡ℎ

empirical quantile of {𝑉 (𝑒,𝑦𝑒 ) |𝑒 ∈ D′𝑐𝑎𝑙𝑖𝑏 };
12 Construct prediction interval

𝐶 (𝑒) = [𝜇̂𝛼/2 (𝑧𝑒 ) − 𝑞, 𝑞 − 𝜇̂1−𝛼/2 (𝑧𝑒 )] for each 𝑒 ∈ D𝑡𝑒𝑠𝑡 .

3.4.1 Fitting the power-law distribution. Suppose that the node de-
gree 𝑑 follows a discrete power-law distribution starting at 𝑑𝑚𝑖𝑛 ≥
1, then the probability density function (PDF) of the power-law is

defined as

Pr(𝑑) = 1

𝜁 (𝛽, 𝑑𝑚𝑖𝑛)
𝑑−𝛽 , (8)

where 𝜁 (𝛽, 𝑑𝑚𝑖𝑛) =
∑∞
𝑖=0 (𝑖 + 𝑑𝑚𝑖𝑛)−𝛽 is the Hurwitz zeta function

and 𝛽 denotes the scaling exponent for power law distribution.

To determine the best-fitting power-law distribution for a given

degree sequence, our primary objective centers on estimating 𝛽 ,

which is the only unknown parameter in the PDF of the power-law

distribution. Estimating 𝛽 requires selecting 𝑑𝑚𝑖𝑛 , determined by

the standard Kolmogorov-Smirnov minimization approach. This

method identifies 𝑑𝑚𝑖𝑛 as the value minimizing the maximum abso-

lute difference between the empirical distribution 𝐸 (𝑑) and the cu-

mulative distribution function of the best-fitting power law 𝑃 (𝑑 |𝛽)

for degrees 𝑑 ≥ 𝑑𝑚𝑖𝑛 [8]. The estimated 𝛽 is then obtained by [10]

𝛽 = 1 + 𝑛
[
𝑛∑︁
𝑖=1

log

𝑑𝑖

𝑑𝑚𝑖𝑛 − 1

2

]−1
. (9)

3.4.2 Generating ideal degree sequence with 𝛽-parameterized power-
law distribution. In this step, we generate a degree sequence adher-

ing to power law distribution. Various distribution functions follow

the power law. Here we utilize the Pareto distribution [5] as the

specific power-law function to generate the degree sequence, pa-

rameterized by 𝛽 and the number of nodes 𝑛. Specifically, we define

the PDF of the Pareto distribution in link prediction as follows

𝑓 (𝑥 ;𝑥𝑚, 𝛽) =
𝛽 · 𝑥𝛽𝑚
𝑥𝛽+1

, for 𝑥 ≥ 𝑥𝑚, (10)

where 𝑥𝑚 is a scale parameter (minimum value for which the dis-

tribution is defined) and 𝛽 serves as a shape parameter (indicating

the distribution’s tail heaviness and skewness).

3.4.3 Sampling edges from the original graph for a degree distri-
bution that follows the power law. We begin by computing the em-

pirical cumulative distributions for both the degree sequence of

the original graph and the ideal degree sequence. Following this,

we establish sampling probabilities for edges, determined by the

deviation 𝑑𝑣𝑖𝑎(𝑑) between these two distributions. Specifically, for

a given edge 𝑒 = (𝑢, 𝑣), we denote the degree of nodes 𝑢 and 𝑣 as

𝑑𝑢 and 𝑑𝑣 , respectively. The deviation 𝑑𝑣𝑖𝑎(𝑑) is calculated as:

𝑑𝑣𝑖𝑎(𝑑) = |eCDF𝐷 (𝑑) − eCDF𝐷 ′ (𝑑) | , (11)

where eCDF𝐷 (·) and eCDF𝐷 ′ (·) represents the empirical CDFs of

the original degree sequence 𝐷 and the ideal degree sequence 𝐷′,
respectively. Subsequently, the sampling probability of edge 𝑒 can

be determined by:

P(𝑒) = min{𝜆 · 𝑆 (𝑑𝑣𝑖𝑎(𝑑𝑢 ), 𝑑𝑣𝑖𝑎(𝑑𝑣)), 1}, (12)

where 𝜆 > 0 is a hyperparameter and 𝑆 (·) denotes the function of

aggregating the two deviation scores, e.g., the operation of summa-

tion. In this process, we prioritize edges with greater deviations by

assigning them a higher probability considering the deviation direc-

tion. To put this into action, we generate a random floating-point

number, denoted as 𝑟𝑒 , within the range of [0, 1) for each edge 𝑒 . If

𝑟𝑒 ≤ P(𝑒), we retain this edge. Otherwise, we remove it from the

original set of edges.

The overall algorithm for CLP is presented in Algorithm 1. We

first train a base GNN model for standard link prediction from line

3 to line 7. Then, in line 8, the proposed sampling procedure is

implemented. Finally, we apply the conformalized link prediction

method on the sampled edge set from line 9 to line 12 to obtain

prediction intervals.

4 EXPERIMENTS
In this section, we conduct experiments on real-world graph datasets

across various domains (e.g., biology, citation network, and social

network) to evaluate the performance of our proposed method. In

particular, we aim to answer the following research questions:

• Does the proposed CLP procedure attain the desired coverage

in practical implementations?
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Table 1: Basic statistics of the datasets.

Dataset Name #Nodes #Edges KS Statistic
ogbl-ddi 4,267 1,334,889 0.3275

ogbl-ppa 576,289 30,326,273 0.0908

ogbl-citation2 2,927,963 30,561,187 0.0302

german credit 1,000 22,242 0.1133

rochester38 4,563 167,653 0.1446

• Does the proposed S-CQR for CLP effectively enhance CP

efficiency?

• How does the proposed S-CQR perform across different

GNN-based link prediction models?

• How does the involved hyperparameter impact the perfor-

mance of CLP procedure?

4.1 Experimental Setup
4.1.1 Datasets. We evaluate the proposed CLP procedure on five

benchmark datasets for link prediction, including the drug-drug

interaction network ogbl-ddi, protein interaction network ogbl-ppa,

citation network ogbl-citation2 [20], and two social networks Ger-

man Credit [2] and Rochester38 [42]. This selection spans various

graph scales, from smaller ones to large-scale graph datasets with

millions of nodes, showcasing the wide-ranging applicability of our

methods in real-world web contexts. The basic statistics of these

datasets are shown in Table 1. We can see that the node degree

distribution in ogbl-ddi dataset adheres least to the power-law

distribution, followed by the Rochester38 dataset.

4.1.2 Backbone Models. We employ a three-layer Graph Convo-

lutional Network (GCN) [27] and GraphSAGE [17] as the base

models for link prediction. Note that any GNN models can be inte-

grated into our proposed CP pipeline. CQR is implemented using

neural networks for quantile regression, and the neural network

architecture consists of three fully connected layers, with ReLU

nonlinearities mapping between layers.

4.1.3 Evaluation Setup. For ogbl-ddi, ogbl-ppa, and ogbl-citation2

datasets, we use the splits given in the original papers [20]. For

German Credit and Rochester38, we split the links into sets as

follows: 50% for training (D𝑡𝑟𝑎𝑖𝑛), 10% for validation (D𝑣𝑎𝑙 ), 20%
for calibration (D𝑐𝑎𝑙𝑖𝑏 ), and 20% for testing (D𝑡𝑒𝑠𝑡 ). We conduct

five different random splits of calibration and test sets, and perform

10 repetitions of the experiment for each split. Averaged results

are reported below. We then measure empirical coverage and the

average length of prediction interval to evaluate the validity and

efficiency of both CQR for CLP and S-CQR (sampling-based) for

CLP. A detailed experimental setting is provided in Appendix A.

It should be noted that CLP is a relatively recent research field.

To the best of our knowledge, there exists only one prior study [35]

related to this issue. However, this work formalizes the problem

in a different way from ours and thus cannot be directly used

for comparison. Specifically, our work focuses on constructing

prediction intervals that bound the miscoverage, while [35] focuses

on bounding the false discovery rate.

4.2 Main Results
In Table 2, we present the empirical coverage and average length

of prediction intervals across five datasets with GCN as the back-

bone. We can have the following observations according to the

experimental results.

4.2.1 The proposed Conformalized Link Prediction procedures achieve
the target coverage. As shown in Table 2 and Table 3, with the pre-

defined error rate 𝛼 = 0.1, both CQR and S-CQR for Conformal-

ized Link Prediction achieve the desired coverage (90%) on all five

datasets. This empirically validates the theory established in Sec-

tion 3.1. That is, in an inductive scenario, utilizing GNNs for link

prediction on graphs adheres to a particular permutation invariance

requirement and fulfills the exchangeability condition needed for

CP. This enables the design of more advanced uncertainty quantifi-

cation methods for link prediction integrated with CP techniques.

4.2.2 The proposed sampling-based strategy effectively improves
CP efficiency. Our proposed sampling strategy is very effective

at improving the efficiency of the CLP process and assists in the

generation of tighter prediction intervals while maintaining a de-

sirable coverage rate. This result suggests that our proposed CLP

approach can generate more informative prediction intervals in

link prediction, which can be important in critical decision-making

contexts. Particularly, we have the following observations: Firstly,
we measure the KS statistic values for the graphs before and after

the sampling operation outlined in Section 3.4. A lower KS statistic

value suggests that the degree distribution of a graph aligns better

with the characteristics of a power law distribution. The results are

displayed in the ‘KS Statistic’ column in Table 2. As we can see, the

proposed sampling procedure can generate graphs with a node de-

gree distribution that is more in line with the power law. Secondly,
the proposed S-CQR for CLP effectively reduces the average length

of prediction intervals and increases the efficiency. This validates

our hypothesis in Sec. 3.3 that with the same backbone GNN mod-

els, graphs that closely follow power law distribution typically lead

to higher CP efficiency. Thirdly, based on the results, it is evident

that the proposed approach tends to perform more effectively on

graphs whose degree distributions do not follow power law very

well. For example, when assessing its performance on the ogbl-ppa

and ogbl-citation2 datasets, which prominently follow the power

law distribution (i.e., smallest KS statistics among the five datasets),

the improvements in CP efficiency over the CQR are relatively mod-

est. That is, the enhancements on these two datasets are the most

modest among the five datasets evaluated, amounting to 3.54% and

11.48%, respectively. For the remaining datasets that do not closely

adhere to the power law distribution, the observed enhancements

in efficiency appear to be much more substantial.

4.2.3 CLP performance with different backbone link prediction mod-
els. To examine the impact of backbone GNN models on the perfor-

mance of the S-CQR for CLP process, we replace the GCN model

with GraphSAGE and repeat the above experiments. The results

are shown in Table 3. Our observations are as follows: The pro-

posed approach consistently attains the target coverage rate and

improves efficiency, i.e., reducing the length of prediction interval,

across different backbone GNN models. For instance, on ogbl-ddi

dataset, S-CQR decreases the prediction interval length from 0.7656
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Table 2: Empirical coverage and average length of predictions intervals with target coverage 90% (GCN backbone).

dataset KS Statistic method emp. coverage (%) avg. prediction length improved
efficiency

before 0.32 CQR for CLP 91.79 ± 0.02 0.7656 ± 0.0135

ogbl-ddi

after 0.24 S-CQR for CLP 91.45 ± 0.05 0.6321 ± 0.0252

↑ 17.43%

before 0.08 CQR for CLP 90.31 ± 0.06 0.1720 ± 0.0400

ogbl-ppa

after 0.04 S-CQR for CLP 90.08 ± 0.01 0.1659 ± 0.0010

↑ 3.54%

before 0.03 CQR for CLP 90.09 ± 0.06 0.1428 ± 0.0013

ogbl-citation2

after 0.02 S-CQR for CLP 90.01 ± 0.12 0.1264 ± 0.0322

↑ 11.48%

before 0.11 CQR for CLP 91.43 ± 0.23 0.9552 ± 0.0200

german credit

after 0.03 S-CQR for CLP 91.49 ± 0.29 0.7080 ± 0.0119

↑ 25.87%

before 0.14 CQR for CLP 90.00 ± 0.02 0.8078 ± 0.0160

rochester38

after 0.11 S-CQR for CLP 90.14 ± 0.13 0.4844 ± 0.0165

↑ 40.03%

Table 3: Empirical coverage and average length of predictions intervals with target coverage 90% (GraphSAGE backbone).

dataset KS Statistic methods emp. coverage (%) avg. prediction length improved
efficiency

before 0.32 CQR for CLP 91.77 ± 0.03 0.7343 ± 0.0072

ogbl-ddi

after 0.24 S-CQR for CLP 91.83 ± 0.02 0.6619 ± 0.0167

↑ 9.85%

before 0.08 CQR for CLP 90.44 ± 0.03 0.1698 ± 0.0013

ogbl-ppa

after 0.04 S-CQR for CLP 90.10 ± 0.04 0.1665 ± 0.0018

↑ 1.94%

before 0.03 CQR for CLP 90.13 ± 0.11 0.1399 ± 0.0017

ogbl-citation2

after 0.02 S-CQR for CLP 90.02 ± 0.07 0.1293 ± 0.0083

↑ 7.57%

before 0.11 CQR for CLP 90.74 ± 0.28 0.9054 ± 0.0093

german credit

after 0.03 S-CQR for CLP 91.19 ± 0.15 0.7402 ± 0.0125

↑ 18.25%

before 0.14 CQR for CLP 90.03 ± 0.05 0.7065 ± 0.0142

rochester38

after 0.11 S-CQR for CLP 90.01 ± 0.01 0.5099 ± 0.0236

↑ 27.82%

Table 4: Statistics of sampled graphs under different values
of 𝜆 on Rochester38 dataset.

𝜆 graph density KS Statistic

0.45 0.0143 0.1423

0.40 0.0127 0.1374

0.35 0.0112 0.1246

0.30 0.0097 0.1167

0.25 0.0082 0.0915

0.20 0.0066 0.0719

0.15 0.0049 0.0648

to 0.6321 with GCN and from 0.7343 to 0.6619 with GraphSAGE as

the backbone models, meanwhile achieving the targeted 90% cover-

age rate. The observed efficiency gains across different backbone

models indicate that our method consistently boosts CP perfor-

mance, demonstrating its backbone-model-agnostic effectiveness

and robustness. This consistency aligns with expectations, as the

link prediction process acts as a black box to the subsequent CLP

procedure, suggesting the method’s adaptability.

4.3 Comparison to Bayesian-based Uncertainty
Quantification Methods

To establish more baselines for comparisons, we further implement

two of the most common bayesian-based uncertainty quantification
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Figure 2: Performance of S-CQR for conformalized link pre-
diction under different 𝜆 on Rochester38 dataset.

methods: BayesianNN [13] and Monte Carlo Dropouts [24]. The

results on three datasets are presented in Table 5.

Comparing Table 5 with Table 2 and Table 3, we can observe

that though both two Bayesian-based approaches can achieve or

almost achieve the desired coverage rate, they yield much wider

prediction intervals compared to our proposed method. This raises

concerns about the efficiency of these Bayesian-based UQ methods.

Additionally, their computational complexity is another significant

concern.
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Table 5: Performance of bayesian-based UQ methods.

dataset method empirical
coverage

average
prediction
length

ogbl-ddi

MC Dropout 0.9905 1.9999

BayesianNN 0.9240 1.9865

german credit

MC Dropout 0.8921 1.9989

BayesianNN 0.8978 1.8560

rochester38

MC Dropout 0.9000 1.8023

BayesianNN 0.9000 1.7956

4.4 Analysis of Parameter 𝜆
To understand the effect of the hyperparameter 𝜆 involved in the

sampling process of S-CQR on its performance, we further conduct

experiments on the Rochester38 dataset (randomly selected) apply-

ing different values of 𝜆. Adjusting the value of 𝜆 impacts the density

of the sampled graph. Specifically, a higher 𝜆 yields a denser graph.

Specifically, we vary 𝜆 among {0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15} and
perform the S-CQR for the CLP procedure. The statistics of the re-

sulting sampled graphs are presented in Table 4. As we can see, by

controlling the value of 𝜆, we can easily obtain edge sets exhibiting

varying levels of adherence to the power law. A lower 𝜆 leads to

increased adherence and reduced edge density.

We furthermeasure the performance of S-CQR for CLP, including

empirical coverage and the average length of prediction intervals,

under varying 𝜆. The results are shown in Figure 2. We can ob-

serve that while an extremely small value of 𝜆 tends to yield graphs

with degree distributions aligning more closely with the power

law, the inevitable decrease in edge density leads to a great loss

of structural information. This subsequently results in a degraded

CP performance, often manifested as an inability to attain the de-

sired coverage and larger prediction intervals. These observations

guide the selection of the optimal value for the parameter 𝜆 during

implementation.

5 RELATEDWORKS
5.1 Uncertainty Quantification on Graphs
Graph-based machine learning models, especially in high-stakes

scenarios, demand robust uncertainty quantification to avoid po-

tentially costly errors. However, many current GNNs lack reli-

able uncertainty quantification methods, limiting their practical

application. In previous studies, a common approach was adopt-

ing Bayesian techniques [15, 25, 28]. These methods aimed to ob-

tain a distribution over network weights and quantify uncertainty

through the posterior distribution. In the graph context, UAG [12]

used Bayesian uncertainty techniques to devise an uncertainty-

aware attention mechanism to defend against adversarial attacks

on GNNs. B-GCN [52] provided a way to integrate uncertain graph

information using a parametric random graph model. GDC [18]

tackled issues like over-smoothing and over-fitting commonly seen

in deep GNNs, allowing for learning with uncertainty in graph anal-

ysis tasks and ultimately improving downstream task performance.

However, Bayesian approaches, while theoretically sound, often

encounter computational challenges. Additionally, the approxima-

tion methods for derivatives come with practical implementation

drawbacks.

In recent years, conformal prediction [43] has gained notable

attention as a simple yet potent approach for producing statistically

reliable uncertainty estimates. Nevertheless, conformal prediction

has seen limited application in the context of graph-structured data,

and the majority of existing studies have primarily focused on tasks

related to node-level classification [9, 21, 50] and regression [21].

5.2 Conformal Prediction on Graphs
Research efforts for applying conformal prediction to graph data

have been relatively less. For instance, [9] modifies existing con-

formal classification methods by incorporating network structure

to adjust the conformal scores and introduces NAPS, a technique

for constructing prediction sets for node classification in an in-

ductive learning setting. Additionally, [16] introduces a confor-

mal approach that provides prediction sets with distribution-free

guarantees, making use of node-wise homophily in a transductive

context. This approach updates conformal scores for each node

based on neighborhood diffusion. Furthermore, [21] investigates

the exchangeability of node information in the transductive setting

and introduces a permutation invariance condition that allows the

conformal prediction to operate effectively on graph data. They

also devise a topology-aware output correction model, CF-GNN, to

enhance the efficiency of the conformal prediction procedure.

However, despite the progress in developing conformal predic-

tion methods for node classification and regression, the application

of such approaches to link-level tasks on graphs has remained

under-explored. In our research, we propose conformalized link

prediction to further extend the conformal prediction procedure

to link-level tasks on graphs and demonstrate its validity for link

prediction under an inductive setting. Informed by the empirical

analyses of synthetic data, we then propose a simple yet effective

sampling-based method that leverages the structural properties of

graphs to improve the efficiency of the standard conformal predic-

tion pipeline. The key idea is to sample from the original graph to

generate a new graph whose degree distribution aligns well with

the power law distribution before applying the standard CQR. To

the best of our knowledge, only one previous study has applied

conformal prediction to link prediction on graphs [35]. This study,

however, conceptualizes the problem differently from our approach,

with an emphasis on bounding the false discovery rate in contrast

to our focus on bounding the miscoverage rate. This distinction

precludes a direct comparison between the two studies.

6 CONCLUSION
In this research, we delve into the newly identified challenge of

conformalized link prediction (CLP), which applies the principles

of conformal prediction to graph neural network (GNN)-based link

prediction tasks. Our focus is on validating the exchangeability

assumption critical to CLP, for which we introduce a permutation

invariance criterion tailored for link prediction, guaranteeing pre-

cise coverage at test time. Utilizing this criterion, we evaluate the

feasibility of incorporating a standard conformal prediction frame-

work, such as CQR, into CLP. We note a significant drawback in

4497



Conformalized Link Prediction on Graph Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain.

the direct use of CQR, namely its inefficiency, and uncover a crucial

relationship between the graph’s adherence to a power law distri-

bution and the efficiency of CQR (i.e., the length of the prediction

interval). This insight prompts us to develop a novel sampling-based

conformal prediction technique that modifies the graph structure

to align with a power law distribution, markedly enhancing the ef-

ficiency of conformal prediction. Our experimental findings reveal

that this innovative method not only meets the desired coverage

levels but also significantly narrows the prediction intervals when

compared to existing approaches. Looking ahead, there is potential

for creating more sophisticated conformal prediction strategies for

CLP and expanding this framework to tackle node-level conformal

prediction challenges.
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A REPRODUCIBILITY

Table 6: Experimental settings for link prediction models.

dataset ogbl-ddi ogbl-ppa ogbl-citation2 german credit rochester38
training epochs 200 300 50 500 500

learning rate 5e-3 1e-2 5e-4 1e-2 1e-2

batch size 64×1024 64×1024 512 2048 2048

hidden dimension 128 256 256 128 128

Table 7: Experimental settings for quantile regression.

dataset ogbl-ddi ogbl-ppa ogbl-citation2 german credit rochester38
training epochs 200 50 50 200 200

learning rate 5e-4 5e-4 5e-4 5e-4 5e-4

batch size 64 64 64 64 64

hidden dimension 64 64 64 64 64

The experimental settings for the training of link prediction

models and quantile regression are provided in Table 6 and Table 7,

respectively.
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