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The Ubiquity of Graphs

Road network | Brain network

This Tutorial: Graphs = Networks




Graph Mining: Applications

Credit scoring
oy

Computational bioinformatics
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[1] Xu, X., Zhou, C., & Wang, Z. (2009). Credit Scoring Algorithm based on Link Analysis Ranking with Support Vector Machine. ESWA 2009.
[2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H. (2017). Hidden: Hierarchical Dense Subgraph Detection with Application to Financial Fraud
Detection. SDM 2017.

[3] Luo, S., Shi, C., Xu, M., & Tang, J. (2021). Predicting Molecular Conformation via Dynamic Graph Score Matching. NeurIPS 2021.
[4] Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., ... & Yu, J. (2020). Traffic Flow Prediction via Spatial Temporal Graph Neural Network. WWW 2020.



Graph Mining: How To Z‘IDEH!
* A pipeline of graph mining

Input graph Mining model Mining results
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Graph Mining: Who & What

* Who are in the same online community?

* Who is the key to bridge two academic areas?

e Who is the master criminal mind?
 Who started a misinformation campaign?

* Which gene is most relevant to a given disease?

* Which tweet is likely to go viral?
* Which transaction looks suspicious?

* Which items shall we recommend to a user?
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Graph Mining: Why and How f{ml

* How to ensure algorithmic fairness on graphs?

. - (loan approval) Approved Not Approved
v, @
N 0
rl/ >< - Node classification v \—/
@, @ algorithm @ 9 ﬁ} @
- A & & e . °
/ o ~ This Tutorial
° _ g C -
a \_/ N
2 : male 2 : female P(approved | z ?
® ?

)
)

P(approved | &

* How do fake reviews skew the recommendation results?
* How do the mining results relate to the input graph topology?

* Why are two seemingly different users in the same community?

* Why is a particular tweet more likely to go viral than another?
* Why does the algorithm ‘think” a transaction looks suspicious?



Algorithmic Fairness in Machine Learning

* Motivation
— No data and/or model are perfect
— Model trained on data could systematically harm a group of people

e Goals: (1) understand and (2) correct the bias(es)
* Examples: bias in machine learning systems
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can (and can't) tell us about Al bias

A striking image that only hints at a much bigger problem

ames Vincent | Jun 23, 2020, 3:45pm EDT
2D 20D

’ : TR = - -V;"“ N
7 S =
U4 - X
~ T R
V. Qi | igina e
n D A0
o > ol an
“Female doctor” 4 an -~ .
7 1800 [ | oo :

of 4
- 0 250 500 750 W0DO O 250 5D 750 10D0

[1] https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias
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Algorithmic Fairness on Graphs: Loan Approval et

 Example: loan approval

o male g %
g: female / 0

Y

Node classification
algorithm

Not Approved

N
N
a s
@

P(approved |2 )=2/3

/3

P(approved | R) =

Unfair!
Male has a higher
approval rate than
female

* We consider the binary biological sex for all examples, and we acknowledge the existence of non-binary gender identity.

[1] http://tonghanghang.org/netfair.htm
E [2] http://jiank2.web.illinois.edu/tutorial/cikm21/fair_graph_mining.html

[3] http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html



http://tonghanghang.org/netfair.html

Algorithmic Fairness on Graphs: Suicide Prevention -ixj

* Suicide is one of the leading causes of death in US  Percentage of high schoolers

reporting a suicide attempt in the past
]
SUICIDE

12 months, by race/ethnicity

PREVENTION AAN
20.1%
LIFELINE ) 9 Individual i
1-800-273-TALK (8255) : Hultipis D 12.3%
suicidepreventionlifeline.org Gatekeeper races
= D S A Warning sign of suicide Black | 10.0%
— friendship Total [ 9%
white [ 8.9%
Hispanic [ 84%
Asian [ 74%
Gatekeeper training Toy example of a gatekeeper Suicide attempts
programs training program by race/ethnicity

* Observation: existing suicide prevention efforts disproportionately affect
individuals of different demographics

[1] https://www.cdc.gov/nchs/data/vsrr/vsrr024.pdf
[2] https://988lifeline.org/

[3] https://www.childtrends.org/publications/addressing-discrimination-supports-youth-suicide-prevention-efforts




Algorithmic Fairness on Graphs: COVID-19 Vaccine Allocation DA

COVID-19 Vaccinations per 100 People by World Bank Income Group
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Toy example of virus dissemination Statistics of COVID-19 vaccine allocation

(as of Oct. 1, 2021)
* Observation: vaccines are unequally distributed

* Key question: how to ensure algorithmic fairness on graphs?

[1] Rydland, H. T., Friedman, J., Stringhini, S., Link, B. G., & Eikemo, T. A. (2022). The Radically Unequal Distribution of COVID-19 Vaccinations: A Predictable yet Avoidable
E Symptom of the Fundamental Causes of Inequality. Human. Soc. Sci. 2022.




Algorithmic Fairness: Definition Lack of favoritism

v

* Principle: lack of favoritism from one side or another

* Definitions of algorithmic fairness

— Group fairness
 Statistical parity
e Equal opportunity
* Equalized odds Fairness definition Two sides

One side

—Individual fairness Group fairness Two demographic groups

— Counterfactual fairness Individual fairness Two data points

— Difference principle , , , ,
Counterfactual fairness A data point and its counterfactual version

Difference principle Two groups of points with different utility

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S. (2015). Certifying and Removing Disparate Impact. KDD 2015.
[2] Hardt, M., Price, E., & Srebro, N. (2016). Equality of Opportunity in Supervised Learning. NeurlPS 2016.

[3] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through Awareness. ITCS 2012.
[4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. NeurlPS 2017.
[5] Rawls, J. (1971). A Theory of Justice. Press, Cambridge 1971.




Group Fairness: Statistical Parity f{lnm!

* Definition: equal acceptance rate
Pro(y =c)=Pr_(y =c)
— y: model prediction
— Pr_.: probability for the protected group
— Pr_: probability for the unprotected group
— Also known as demographic parity, disparate impact

* Example: loan approval Approved Not Approved

Node classification \/ v PrZ(X = approved) = 2/3

algorithm % 2 9 Prg(y = approved) = 2/3
- - - Fair result

g g Same approval rate for

male and female

:
:

[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S. (2015). Certifying and Removing Disparate Impact. KDD 2015.




Group Fairness: Equal Opportunity [yl

* Definition: equal true positive rate
Pry(=cly=c)=Pr_(¥ =cly =c)

If hold for all classes, it

— y: true label
is called equalized odds

— ¥: model prediction
— Pr,: probability for the protected group
— Pr_: probability for the unprotected group

* Example: loan approval Approved Not Approved
27 E
N v Prs (9 = approved|a) = 1
Pra(y = approved| &) = 1

graph mining

'~ '~
algorithm @ @
d ah &b

-
@

— -
® 9. @) 8
-8 male PN : female
2
B5 v AR -
o truth = approved : truth = not approved

[1] Hardt, M., Price, E., & Srebro, N. (2016). Equality of Opportunity in Supervised Learning. NeurlIPS 2016.

8 Fair result
Same true positive rate

for male and female

30
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Individual Fairness e

* Definition: similar individuals should have similar outcomes
— Rooted in Aristotle’s conception of justice as consistency

“Equality consistsin

the same treatment of

@‘f‘ S similar persons, and no
N government can stand
" //

* Formulation: Lipschitz inequality (most common)
. hich is not founded
di (M), M) S Ldy(%,7) | B
— M: a mapping from input to output
— d: distance metric for output
— d,: distance metric for input

Input Space Output Space
— L: a constant scalar M(")

* Example x ,/ \*M(x)

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through Awareness. ITCS 2012.
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Counterfactual Fairness

counterfactual version M‘n

* Definition: same outcomes for|‘different versions’|of the same candidate
Pr()?5=51 =cCls =5, x = x) = Pr(fls=52 =cCls =5,,x = x)

- Pr()?5=51 =cCls =51, x = x): version 1 of x with sensitive demographic s

- Pr()?5=52 =Cls =5,,x = x): version 2 of X with sensitive demographic s,

e Example: causal graph of loan approval

[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. NeurlPS 2017.
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Rawlsian Difference Principle Yot

* Origin: distributive justice
e Goal: fairness as just allocation of social welfare

“Inequalities are permissible when they maximize [...] the
long-term expectations of the least fortunate group.”

-- John Rawls, 1971

* Formulation: max-min problem
— Min: the least fortunate group with smallest welfare/utility
— Max: maximization of the corresponding utility

* Also known as max-min fairness

[1] Rawls, J. (1971). A Theory of Justice. Press, Cambridge 1971.
E * Justice as fairness » Well-ordered society

» Justice is a virtue of instituitions * Designed to advance the good of its members
* Free persons enjoy and acknowledge the rules * Regulated by a public conception of justice




Challenge #1: Theoretical Challenge

* Assumption

Classic machine learning Graph mining
Data lID samples Non-IID graph
— 1ID: independent and identically distributed
 Example -~ -
g ‘ * Individuals are g — ‘ * Individuals are
- independent / o~ connected
@ - ® )
D D
- e Cannot affect - e Can affect others
% [ others 2 @ / through connection(s)
ah o ah o
Classic machine learning Graph mining

e Challenges: implication of non-IID nature on
— Measuring bias
* Dyadic fairness, degree-related fairness
— Mitigating unfairness
e Enforce fairness by graph structure imputation

I

I




Challenge #2: Algorithmic Challenge [yl

* Dilemma: utility vs. fairness

 Example: loan approval

e .« po . @ %-male 51 g-female
— Utility = classification accuracy ") a
A
— Fairness = statistical parity - -ﬂ +truth = approved %B:tr“thm’tappme‘j
Approved Not Approved Approved Not Approved

aal AA - AA
= ) -yl

Nl Nl

Accurate but not fair Fair but not accurate
 Questions Z

— Can we improve fairness at no cost of utility?
— If not, how to balance the trade-off between utility and fairness?
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Roadmap DA
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Preliminary: PageRank [yt

* Assumption: important webpage - linked by many others

* Formulation

— Iterative method for the following linear system
r=cA'r+ (1 -c)e

A: transition matrix

r: PageRank vector

e ¢: damping factor

e: teleportation vector

— Closed-form solution

r=(1-c)(I-cA") e

e Variants

— Personalized PageRank (PPR)
— Random Walk with Restart (RWR)

[1] Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab 1999.
[2] Haveliwala, T. H. (2003). Topic-sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. TKDE 2003.

[3] Tong, H., Faloutsos, C., & Pan, J. Y. (2006). Fast Random Walk with Restart and Its Applications. ICDM 2006.




Unfairness in PageRank et

e PageRank score: a measure of node importance in the network

* Facts: some nodes hold more important/central positions in the network

— biased academic ranking w.r.t. gender - underestimation of scientific contribution by
female

 Example
— Network:
— Groups: r¢
— Red node
e ~48% 0
* “33% 0

Unfair ranking | % ‘
Similar number of red nodes vs. blue nodes (48% red vs. 52% blue) e R

Much less PageRank mass of red nodes (33% red vs. 67% blue)

1. How to define group fairness for PageRank?
2. Can we enforce group fairness on PageRank?

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.




Fairness Measure: ¢-Fairness Yot

Given: (1) a graph G; (2) a parameter ¢

Definition: a PageRank vector is ¢-fair if at least ¢ fraction of total PageRank mass is
allocated to the protected group

Variants and generalizations
— Statistical parity > ¢ = fraction of protected group
— Affirmative action - ¢ = a desired ratio (e.g., 20%)

 Example
— Protected group = red nodes
—¢p=1/3
$=1/ Q| o6 @ |oss
blue nodes«[ Not ¢-fair! blue nodes«[ ¢-fair!
Q|07 0.5 1 QO | 06 0.6 1
06+07+05 3 0.45+0.6+ 06 3
red nodes — ' 0.5 red nodes — ‘ 06

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.




Problem Definition: Fair PageRank [yt

* Given
— A graph with transition matrix A
— Partitions of nodes
* Red nodes (R): protected group
* Blue nodes (B): unprotected group
* Find: a fair PageRank vector r that is
— ¢-fair
— Close to the original PageRank vector r

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.




Fair PageRank: Solutions f{ml

* Recap: closed-form solution for PageRank
r=(1-c)I-cAT) e

* Parameters in PageRank

—Damping factor ¢ avoids sinks in the random walk (i.e., nodes without
outgoing links)
—Teleportation vector e controls the starting node where a random walker
restarts
e Can we control where the walker teleports to? < Solution #1: fairness-sensitive PageRank
—Transition matrix A controls the next step where the walker goes to
* Can we modify the transition probabilities?
* Can we modify the graph structure?

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.




Solution #1: Fairness-sensitive PageRank

* Intuition
— Find a teleportation vector e to make PageRank vector ¢-fair
— Keep transition matrix A and Q7 = (1 — ¢)(I — cAT) 1 fixed
* Observation: mass of PageRank r w.r.t. red nodes R
r(R) =Q'[R,:]e

— QT[R,:]: rows of QT w.r.t. nodes in set R

° (Convex) Optimization prOblem The fair PageRank QT e is as close as
min ” QTe _ r”2 possible to the original PageRank r
S_et_ e[i] (= [O, 1]’ Vi| The teleportation vector e is a
le|l,= 1 probability distribution
”QT [R,: ]e”1= ¢ The fair PageRank Q" e

o needs to be ¢-fair
— Can be solved by any convex optimization solvers

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
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Fairness-sensitive PageRank: Example [nt

e Settings: ¢ = 1/3 and protected node = red node

* Original PageRank Q' e
@|08|07 |03 1/3 0.6
rows w.r.t. Not ¢—fair!
bluenodes | @107 | 09 | 05 1/3| r=Q'e=|07 05 _1
0.6 +0.7+05 3
row w.r.t.
ednodes — @103 | 05 | 07 1/3 0.5
* Fairness-sensitive PageRank Q" &
@ |08|07]|03 1/6 0.45
rows w.r.t. ¢ fairl
bluenodes | @107 |09 |05 1/6| F=Q'&é=|o06 06 ,
FOW W.I.t. 045+ 06+06-3
—
ed nodes —~ @103 | 05 | 0.7 2/3 0.6

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
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Fairness-sensitive PageRank: Experiment [yt

* Observation: the teleportation vector allocates more weight to the red nodes,
especially nodes at the periphery of the network

— More likely to (1) restart at red nodes and (2) walk to other red nodes more often

PageRank ‘ Protected group Fairness-sensitive PageRank
. T ’ Unprotected group ikl
P T i
T 2 S : o R
R, 1A o I
e g e
e R
A trettale st e NOTE: size is proportional to
; ; ORI it 2 4 X score in the teleportation
vector

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.

I




Fair PageRank: Solutions f{ml

* Recap: closed-form solution for PageRank
r=(1-c)I-cAT) e
* Parameters in PageRank
—Damping factor ¢ avoids sinks in the random walk (i.e., nodes without
outgoing links)
—Teleportation vector e controls the starting node where a random walker

restarts
e Can we control where the walker teleports to?
—Transition matrix A controls the next step where the walker goes to

e Can we modify the transition probabilities? ~—— Solution #2: locally fair PageRank
* Can we modify the graph structure?

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.




Solution #2: Locally Fair PageRank Z‘m!

* Intuition: adjust the transition matrix A to obtain a fair random walk

* Neighborhood locally fair PageRank
—Key idea: jump with probability ¢ to red nodes and (1- ¢) to blue nodes

—Example
‘ Protected group 1/3
‘ Unprotected group X :‘ Locally Fair
1/3 (¢ =0.5)

1/3

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.

I




Solution #2: Locally Fair PageRank Z‘m!

* Residual locally fair PageRank
—Key idea: jump with
* Equal probability to 1-hop neighbors
» A residual probability 0 to the other red nodes
—Example

‘ Protected group
‘ Unprotected group Red 6
Nodes

1-6
§+——=1¢

* Residual allocation policies: neighborhood allocation, uniform
allocation, proportional allocation, optimized allocation

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
E * Neighborhood allocation: allocate the residual to protected neighbors, equivalent to neighborhood locally fair PageRank

* Uniform allocation: uniformly allocate the residual to all protected nodes
* Proportional allocation: allocated the residual to all protected nodes proportionally to their PageRank score
* Optimized allocation: allocate the residual to all protected nodes while minimizing the difference with original PageRank score




Locally Fair PageRank: Experiment e

* Observation: PageRank weight is shifted to the blue nodes at boundary

‘ Protected group Neighborhood Locally Fair PageRank

‘ Unprotected group " /‘s
‘, W2 /
/f#
i /

PageRank

4‘ < // S,
\‘ 2l /’/"7
',//‘7"/,4/ ~:'

;v-w-ﬂ,/,,. 7 / h. ,,'_ /
e i/ll.‘."‘/ 'l//’//"m,';/’ N/ X ] /
e

i»'

""n"

%
V/W»

441'/'/2 wJ// “’{'( ':"'

s,

Z I"‘??,{”%/ll if

) 9 VG
’7 NOTE: Size is proportional to

score in the PageRank vector
[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
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Fair PageRank: Solutions f{ml

* Recap: closed-form solution for PageRank
r=(1-c)I-cAT) e

* Parameters in PageRank

—Damping factor ¢ avoids sinks in the random walk (i.e., nodes without
outgoing links)
—Teleportation vector e controls the starting node where a random walker
restarts
e Can we control where the walker teleports to?
—Transition matrix A controls the next step where the walker goes to

* Can we modify the transition probabilities?
* Can we modify the graph structure? «<—— Solution #3: best fair edge identification

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.
E [2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.




Solution #3: Best Fair Edge Identification f‘m!

* Intuition: add edges that can improve the PageRank fairness to the graph

* Example
— @ = protected node 0.257
- Not ¢-fair!
—¢=1/3 r= 0= | ouse g pfairt
0.257 + 0486 + 0.257 3
0.257
0.333
New edge to add F=Q"e=| 0333 qb-fa(irgl33 1
ew edage 1o 4 | B
0.333 0.333+4+0.3334+0.333 3

* Question: how to find the edges with the highest improvement?

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.

I




Best Fair Edge Identification: Problem Definition Z‘IDEH!

* Given
-G =V,§&)
e &:edgeset
* P:node set
— 8 C V: protected node set
—pe(8) = X;ep pe(@): total PageRank mass of nodes in § on graph with edge set £

* Fairness gain of edge addition
gain(x; y) = Peu(x,y) (5) — P¢ (S)L Naive method

Exhaustively recompute

 Goal: find the edge (x,y),Vx,y € V, such that pageRank with the
ar(gm)ax gain(X, :V) addition of each node pair
X,y

* Question: how to efficiently compute the gain?

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.
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Best Fair Edge Identification: Fairness Gain

* Main result: for a node x, the gain of adding a link to another node y
gain(x,y) = A(x, y)pe(x)

where A(x, y) has the form The ‘sensitivity’ of
target node y

The average ‘sensitivity’ of source
node x’s neighbors

(51~ 2 B resT0)

pe(Sly) — d. Yuen, Pe(S|w)

C
1—-c

Alx,y) =
C 1
degreeof — d, + 1—¢ <d Zu EN, pe(x|u) — pg(x|y)> +1
x N~

source node
Average proximity of node x’s neighbors to x
— ps(x|y): personalized PageRank (PPR) score of node x, with query node y, based on edge set €

— pe(S|y) = Xes pe(i|y): total PPR mass of nodes in §, with query node y, based on edge set £

pe(x) : node x should have high PageRank score

d,: node x should have small degree

pe(x|y) — di Y en, Pe(x|u): node y is close to node x

ps(S|y) — di Qo EN, ps(S|u): node y is more sensitive than the source node x’s neighborhood

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.

I
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Best Fair Edge Identification: Experiment e

e Observation: the proposed method find the best edges to improve PageRank

fairness
- PA jC 4 ADA % n2v —A— Fairwak —@— RND

(7] (%]
éo.sm éoass
% 0.500 % 0.350

Baseline  04%0 L0
c € 0.340

Methods &% e
@ 0.470 o 0.335
%30460 %)0330
a - 01 2 3 456 7 8 910 o - 012 3 456 7 8 910

round round

ﬁ 0.58 § 0.44
C 056 c 042
‘T 0.54 O 0.40

Proposed ‘£ s, “% 028

Methods G 050 © 036
m .
o 048 D
a0 46 @ 034
(@]
o 012 3 45 6 7 8 910 o 012 3 45 6 7 8 910

round round
- FREC @ £ FRec @~ PREC E_PREC —$ n2v
Books Dataset Blogs Dataset

[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.
E * FREC: select edge (x, y) with highest gain(x,y) = A(x, y)pe(x) * E_FREC: select edge (x, y) with highest gain(x, y)pacc(x, y)

* PREC: select edge (x, y) with highest gain(x, y | x) = A(x, y)pe(x|x) * E_PREC: select edge (x,y) with highest gain(x,y | x)pacc(x, ¥)
* Dacc (%, y): prediction probability by a logistic regression classifier on the existence of (x, y) using node2vec embeddings
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Preliminary: Spectral Clustering (SC) e

maximize intra-connectivity

Goal: find k clusters such that

minimize inter-connectivity

Optimization problem __—~ Ratio cut

min | Tr (U'LU) s.t. UTU =1

where L is Laplacian matrix of A, U is a matrix with k orthonormal column vectors

Solution: rank-k eigen-decomposition
— U = eigenvectors with k smallest eigenvalues

N
Example \
All female individuals
are grouped together

Unfair clustering
The clustering results are highly
correlated with gender

All male individuals are
grouped together

[1] Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On Spectral Clustering: Analysis and an Algorithm. NeurlPS 2002.
E [2] Shi, J., & Malik, J. (2000). Normalized Cuts and Image Segmentation. TPAMI 2000.




Fairness Measure: Balance Score DA

Intuition: fairness as balance among clusters

Given: a node set I/ with
— h demographic groups: V =V, UV, ..UV,
— kclusters: V =C; UC, ...U Cy

Definition
Ve 0 G

_ . S
balance((C;) = ngl,lerbl] —|Vs/ A e [0, 1], vlie 1,2, ..,k]

Intuition: higher balance - fairer

— Each demographic group is presented with similar fractions as in the whole dataset for every cluster

A5
Example L UN balance(C,)

balance(C;) \_f- VNG |V NG,
BRI S A
Vo, N Cy|" Vy NGy
2'1 T | L& ’ /OH“‘N
|| |NoApy male group (- [R - (I. AT |>
- l,”> ARN'BD

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.

Vs
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Fair Spectral Clustering: Formulation [yl

* Key idea: fairness as linear constraint
— Given
* The spectral embedding U of n nodes in [ clusters (Cy, ..., C;)
* h demographic groups (Vy, ..., %)

— Define
« fO)[{] =1ifi € V, and 0 otherwise
 F = a matrix with f(8) — (“:l—ﬂ) 1,, (s€|[1,..,h—1]) as column vectors

— Observation: F'U = 0 < balanced clusters (i.e., fair clusters)
£ £2)  Fair fraction

* Example 0 05 | 05 0.5 |-0.5
0 05 |05 0.5 [ -0.5

1]0 05/05| __|05|05

0|1 05 |05 -0.5 | 0.5

V,: male group 0|1 0.5 | 0.5 05| 05

0|1 05 |05 -0.5 | 0.5

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.

I




Fair Spectral Clustering: Solution f{lnm!

* Optimization problem
min Tr (UTLU) s.t. UTU=ILFTU=0|

U “~
e Solution How to solve?
—Observation: F'U = 0 > U is in the null space of F'
—Steps
* Define Z = orthonormal basis of null space of FT
* Rewrite U = ZY
mUin Tr (YT'ZTLZY) s.t. Y'Y=I

—Method: rank-k eigen-decomposition on Z' LZ

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Fair Spectral Clustering: Correctness

* Given

I

— A random graph with nodes V by a variant of the Stochastic Block Model (SBM)
— Edge probability bertween two nodes i and j

a, { and j in same cluster and in same group
. b, { and j not in same cluster but in same group
P(i,j) =+ . . .
o { and j in same cluster but not in same group
Ld’ { and j not in same cluster and not in same group
,
forsomea >b>c>d 1

— A fair ground-truth clustering V. = C; U C,

01 CQ
e Example

Theorem: Fair SC recovers the ground-truth C|u5tering C'1 U CZ T \ AT

— Standard SCis likely to return V; U 15 -
— Fair SC will return C; U C,

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Fair Spectral Clustering: Experiment [yl

e Observation: Fairer (higher balance score) with similar ratio cut values for the
proposed method (Algorithm 1 in the figure)

FacebookNet --- gender

FriendshipNet --- gender

InDJoney

k DrugNet --- ethn'icity k

==== Balance of data set
— — Standard SC

@ 0.15[C~ "~ Algorithm 1 )
Q =
c PN
O of %
4°)

c
aa] (s

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
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Preliminary: Node Embedding [yl

* Motivation: learn low-dimensional node representations that preserve
structural/attributive information

* Applications

— Node classification Node clustering

— Link prediction o °° o i A
. [ .
— Node visualization S L., e 1/
® ® Mo -9
20 9
L
(zf,_f/‘; — Link prediction
(a) Input: Karate Graph (b) Output: Representation

Visualization of Node Embedding

[1] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online Learning of Social Representations. KDD 2014.
[2] Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD 2016.

[3] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating Embeddings for Modeling Multi-relational Data. NeurlIPS 2013.




Preliminary: Setup of Node Embedding

* Two key components: pairwise scoring function + loss function
* Pairwise scoring function

— Suppose a node pair e = (u, v); z,, is embedding of u;

— Dot product: s(e) = s({z,,1,z,)) =zl z,

— TransE: s(e) = s((z,, 1,Z,) = —||z, + T — Z,]|5

* Pairwise loss function
— Suppose e; is i-th negative sample for node pair e = (u, v)

— Skip-gram loss .
Le(s(e),s(el‘), ...,S(e;,)) = — log[a(s(e))] - Z log[l - a(s(el-_))]
i=1

— Max-margin loss

Le(s(e),s(el_), ...,S(e,;)) = 2 max(1 + s(e) — s(e; ), 0)
i=1

[1] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online Learning of Social Representations. KDD 2014.
[2] Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD 2016.

[3] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating Embeddings for Modeling Multi-relational Data. NeurlIPS 2013.

I



Preliminary: Random Walk-based Node Embedding A

e Goal: learn node embeddings that are predictive of nodes in its neighborhood

* Key idea
— Simulate random walk as a sequence of nodes
— Apply skip-gram technique to predict the context node

 Example
— DeepWalk: random walk for sequence generation
— Node2vec: biased random walk for sequence generation

* Return parameter p: how fast the walk explores the neighborhood

of the starting node
* In-out parameter g: how fast the walk leaves the neighborhood

of the starting node

[1] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online Learning of Social Representations. KDD 2014.
E [2] Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD 2016.




Fairness Measure: Statistical Parity f‘lu;n!

e Statistical parity
— Given: (1) a sensitive attribute §; (2) multiple demographic groups QS partitioned by §
Extension to multiple groups: variance among the acceptance rates of each group in g5
biasSI(QS ) = Var({acceptance—rate(GS )|G‘S €G° })

* Example: a network of three & and threeg

— acceptance—rate(&)=2/3 Approved Not Approved
— acceptance—rate(&)=2/3 O
— bias>! = Var ({33}) =0
@ 9 @ 9
Fair result S Y a o
VA bias betw I d
feer:]OaleaS etween male an g g

~

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards Fair Graph Embedding. IJCAIl 2019.
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Fairwalk: Solution Z‘Ixﬂl

* Key idea: modify the random walk procedure in node2vec

* Steps of Fairwalk
— Partition neighbors into demographic groups
— Uniformly sample a demographic group to walk to
— Randomly select a neighboring node within the chosen demographic group

* Example: ratio of each demographic group

— Original network vs. regular random walk vs. fair random walk
network regular B fair

-
(W |

percentage

0.0

gender race
[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards Fair Graph Embedding. IJCAIl 2019.
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Fairwalk vs. Existing Works ot

* Fairwalk vs. node2vec
— Node2vec: skip-gram model + walk sequences by original random walk
— Fairwalk: skip-gram model + walk sequences by fair random walk

* Fairwalk vs. fairness-aware PageRank

— Fairness-aware PageRank: the minority group should have a certain proportion of
PageRank probability mass

— Fairwalk: all demographic group have the same random walk transition probability
mass

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards Fair Graph Embedding. IJCAIl 2019.
[2] Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD 2016.

[3] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N. (2021). Fairness-Aware PageRank. WWW 2021.




Fairwalk: Results on Statistical Parity il

* Observations
— Fairwalk achieves a more balanced acceptance rates among groups

— Fairwalk increases the fraction of cross-group recommendations
regular  fair

- LA - gender London - gender
2e~*
le™*
nv
3
S 0
2 ¥ W ¥ NN
82 s LA - race London - race
() 3(‘
O
Q
<

27

le™

0
NN I NP SN S Y

Groups
[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards Fair Graph Embedding. IJCAIl 2019.

I




Overview of Part | Z‘lu;ﬂl

Group Fairness on Graphs

l l l

Ranking Clustering Embedding

[ Fair PageRank ] [ Fair Spectral Clustering ] [ Fairwalk ]

[ FairGNN ]




Compositional Fairness in Node Embedding e

* Compositional fairness: accommodating a combination of sensitive attributes
— Often many possible sensitive attributes for a downstream task

orange
o

accepted

male * Biological sex: male vs. female

* Race: orange vs. green

accepted accepted

PN S * We consider the binary biological sex in this
example, and we acknowledge the existence
of non-binary gender identity

female o .
* We use imaginary race groups to avoid

potential offenses

I_______-*--_______

=

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Fairness Measure: Representational Invariance f‘lu;n!

* Intuition: independence between the learned embedding z and a sensitive

attribute a
Z, L a,,Vnodeu

where a,, is the sensitive value of node u

* Formulation: mutual information minimization
I1(z,,a,) =0,V node u
— Analogous to statistical parity in classification task

— Key idea: fail to predict a,, using z
y P u & Zu Corresponding to

* Solution: adversarial learning ‘adversarial’
— Maximize the error to predict sensitive feature

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Framework e

* Overview: the proposed compositional fairness framework

* Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (D,)

Sensitive
Attributes

w Gender Gelr?der

\5/\ L) Occupation 3-c5 Zl-/ OCCUEaﬁon

= \\
Age Alge
Nod .. Filtered
input Qraph Emb:dZing Comgﬁ:;lonal IEmIbee(:zing Discriminators

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Key Component #1: Compositional Filter f‘m!

(Also called compositional encoder, i.e., C-ENC)

e Goal: filter sensitive information from the embeddings
— The “filtered” embedding should be invariant to those attributes

* Formulation

1
C—ENC(w,S) = ﬁz f(ENC(w))

keS
— Compositional filter: a collection of filters

— Filter: trainable function f; (neural networks, e.g., MLP)
— Input: node ID u and the set of sensitive attributes S (e.g., gender, age)
— Compositionality: summation over all sensitive attributes

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Framework e

* Overview: the proposed compositional fairness framework

* Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (D,)

Sensitive
Attributes

w Gender Gelr?der

\5/\ L) Occupation 3-c5 Zl-/ OCCUEaﬁon

= \\
Age Alge
Nod .. Filtered
input Qraph Emb:dZing Comgﬁ:;lonal IEmIbee(:zing Discriminators

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Key Component #2: Discriminator Z‘lu;n!

e Goal: predict the sensitive attribute from the ‘filtered” embeddings

* Formulation
D, (C—ENC(w,S5),a") = Pr(a, = a*|c - ENC(w,$))
— Dy,: discriminator for k-th sensitive attribute
— Input: node u’s ‘filtered’ embedding and attribute value
= Pr(au = ak|C — ENC(u, S)): likelihood that node u has that attribute value

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

I




Compositional Fairness: Loss Function Z‘lu;n!

e Pairwise loss function
L(e) = Ledge(s(e); s(er), ., 5(61;1))

+12 2 log(Dk(C_ENC(u'S)’ak))

kES akeA,
— Ledge: pairwise loss function for graph embedding

—log (Dk(C —ENC(u, S), ak)) : the discriminator fails to predict sensitive attribute

correctly with the ‘filtered” embeddings Aartes
« Advantages P , p: oo
— Simple intuition Y — - Ocoupation : -
— Flexible and easy-to-implement module = | |
— Plug-and-play style eing| COmPOSItion L g Discriminators

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Fairness Results DA

* Task: classifying the sensitive attribute from the learned node embeddings
— Baseline methods: each adversary is a 2-layer MLP

* Baseline (no adversary): Vanilla model train without fairness consideration
* Independent adversary: independent adversarial model for each attribute

e Observations

— Accuracy of compositional adversary is no better than majority classifier
— Performance of compositional adversary is at the same level with independent adversaries

MOVIELENSIM | BASELINE GENDER AGE OccuprATION  COMP. MAJORITY =~ RANDOM
NO AD-  ADVERSARY ADVERSARY ADVERSARY ADVERSARY CLASSIFIER CLASSIFIER
VERSARY
_~ AUC
GENDER 0.712 0.532 0.541 0.551 0.511 0.5 0.5 _
AGE 0.412 0.341 0.333 0.321 0.313 0.367 0.1417] Micro
OCCUPATION 0.146 0.141 0.108 0.131 0.121 0.126 0.05 F1

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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Compositional Fairness: Effectiveness Results e

 Task: recommendation

e Observation: there is only a small increase in root mean squared error (RMSE)

compared with the vanilla model
1.8

—— Gender Adversary
1.7 —— Age Adversary
16 —— Occupation Adversary
—— Compositional Adversary
1.5 .
—— Baseline No Adversary
Ll
w 14
E 1.3
o
1.2
1.1
1.0 =
0.9
0.8

25 20 75 100 126 150 176 200

Epochs

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

I




Overview of Part | Z‘lu;ﬂl

Group Fairness on Graphs

l l l

Ranking Clustering Embedding

[ Fair PageRank ] [ Fair Spectral Clustering ] Fairwalk

Compositional Fairness




Limitation: Adversarial Debiasing A

* Adversarial debiasing
— Minimize a task-specific loss function to learn ‘good’ representations
— Maximize the error of predicting sensitive feature to learn ‘fair’ representations

* Limitations
— Require the sensitive attribute of all training nodes to train a good discriminator
— Ignore the fact that sensitive information is hard to obtain due to privacy

* Question: can we apply adversarial learning-based debiasing with limited sensitive
attribute information? Sensitive

Attributes

D

fﬁl . . . | Gender e
Yh — . ‘ - Occupation 3- & cueaﬁm
= ¢
. Age ABe

Filtered
Embedding| Discriminators

Node
Embedding

Compositional
Filter

Input Graph

[1] Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
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FairGNN: Fairness with Limited Sensitive Attribute Information [Vl

* Key idea
— Train a sensitive attribute estimator to infer pseudo sensitive attribute
— Train adversary to learn fair embedding using the pseudo sensitive attribute

 FairGNN framework
— A backbone graph neural network (GNN) GCN based sensitive
e Any GNN can be the backbone attribute estimator f;

— Adversarial debiasing module | | pfo------omooo—oo—o--
* GCN-based sensitive attribute estimator . N jommm o .

* Adversary in the figure
— Covariance minimizer

_—— - ——

:Hiddeni A i
| layers 4

Main focus ! Input layer | Output layer! |

|
1
__________ N ~ - I

[1] Dai, E., & Wang, S. (2021). Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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FairGNN: Adversarial Debiasing Module [yt

* Adversary
— Intuition: maximize the error of predicting pseudo sensitive attribute information
— Loss function

L4 = Eppmis=nl1og fa()] + Eppmis=0y|log(1 — fa(h))]

« §:pseudo sensitive attribute information

h: node embedding extracted from a graph neural network

h ~ p(h|§ = 1): randomly sample a node embedding whose corresponding node has § = 1
fa(h): output of the adversary

* Remark: similar to the discriminator in compositional fairness constraint (CFC) framework

Sensitive
Attributes

S ender D
[n] ._. / Gend // Gender
— - Occupation 3; — D, . . . .
v o X® | \[ = =P Similar to adversary in FairGNN
= \
. Age i AEa

Node
Embedding

Filtered

Compositional Embedding| Discriminators

Filter

Input Graph

[1] Dai, E., & Wang, S. (2021). Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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FairGNN: Covariance Minimizer f‘m!

* Observation: adversarial learning is notoriously unstable to train
— Failure to converge may cause discrimination

* Key idea: additional prerequisite of independence is needed to provide
additional supervision signal

* Solution: absolute covariance between model prediction y and pseudo
sensitive attribute § should be minimized

— Why absolute: covariance can be negative

Lp = |cov($,9)| = |E[(§ — E[SDY — E[yD]I

[1] Dai, E., & Wang, S. (2021). Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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e e GCN based sensitive e o
FairGNN: Overall Loss Function — O -

I
I
o |
* Regularized learning i /g L & |
I — ! I
L=L,+Lp—aLl,+ BL, O (ot (o NI .
. : S outeutlaver Le
* Intuition \____GNNclassifier f; 1
— L classification loss (e.g., cross entropy) for learning representative node

representation

— L sensitive attribute estimation loss for generating accurate pseudo sensitive
attribute information

— L 4: adversarial loss for debiasing the learned node representation
— Lp: covariance for stabilizing the training of adversary

[1] Dai, E., & Wang, S. (2021). Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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FairGNN: Experiment

I

* Observation: FairGNN achieves comparable node classification accuracy with
a much smaller bias

Dataset Metrics GCN GAT ALFR ALFR-e Debias Debias-e FCGE FairGCN FairGAT
ACC (%) 70.2 +0.1 70.4 +0.1 65.4 +0.3 68.0 +0.6 65.2 +0.7 67.5 +0.7 65.9 +0.2 70.0 £0.3 70.1 +£0.1
Pokec-z AUC (%) 77.2 £0.1 76.7 £0.1 71.3 £0.3 74.0 £0.7 71.4 £0.6 74.2 +0.7 71.0 £0.2 76.7 £0.2 76.5 +0.2
Asp (%) 99 +1.1 9.1 +0.9 2.8 £0.5 5.8 £0.4 1.9 £0.6 4.7 +£1.0 3.1 +0.5 0.9 +0.5 0.5 +0.3
Ago (%) 9.1 +£0.6 8.4 +0.6 1.1 +£0.4 2.8 £0.8 1.9 +0.4 30+14 1.7 £0.6 1.7 £0.2 0.8 +0.3
ACC (%) 70.5 +£0.2 70.3 +£0.1 63.1 £0.6 66.2 +£0.5 62.6 +0.9 65.6 +0.8 64.8 +0.5 70.1 +0.2 70.0 +0.2
Pokec-n AUC (%) 75.1 +0.2 75.1 +0.2 67.7 £0.5 71.9 +0.3 67.9 +£0.7 71.7 £0.7 69.5 +0.4 74.9 +0.4 74.9 +0.4
Asp (%) 9.6 +0.9 94 +0.7 3.05 +0.5 4.1 +0.5 2.4 +0.7 3.6 +0.2 4.1 +0.8 0.8 +£0.2 0.6 +0.3
Aeo (%) 12.8 +£1.3 12.0 £1.5 3.9 +£0.6 4.6 +1.6 2.6 1.0 4.4 +1.2 5.5 +£0.9 1.1 +0.5 0.8 +0.2
ACC (%) 71.2 £0.5 71.9 +1.1 64.3 +1.3 66.0 +0.4 63.1 +£1.1 65.6 +2.4 66.0 +1.5 71.1+1.0 71.5 +0.8
NBA AUC (%) 78.3 £0.3 78.2 £0.6 71.5 £0.3 72.9 +£1.0 71.3 +0.7 72.9 +£1.2 73.6 £1.5 77.0 £0.3 77.5 £0.7
Asp (%) 7.9 +1.3 10.2 +£2.5 2.3 +0.9 4.7 £1.8 25 +1.5 5.3 +0.9 2.9 +1.0 1.0 +0.5 0.7 +0.5
AEO(%) 17.8 £2.6 15.9 +4.0 3.2+1.5 4.7 £1.7 3.1+1.9 3.1+1.3 3.0+1.2 1.2 +0.4 0.7 £0.3

[1] Dai, E., & Wang, S. (2021). Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.
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Coffee Break 3@

* 15 minutes coffee break
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Overview of Part i Z‘lu;ﬂl

Individual Fairness on Graphs

l l

Laplacian Regularization Learning-to-Rank

T s )

Check the details of REDRESS in the longer version of this tutorial at KDD’22
Algorithmic Fairness on Graphs: Methods and Trends
http://jiank2.web.illinois.edu/tutorial/kdd22/algofair on graphs.html

[1] Dong, Y., Kang, J., Tong, H., & Li, J. (2021). Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
E [2] Kang, J., & Tong, H. (2022). Algorithmic Fairness on Graphs: Methods and Trends. KDD 2022.



http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html

Graph Mining: An Optimization Perspective [yl

* A pipeline of graph mining

Input graph A Mining model w/ parameters 6 Mining results Y
101010
QIDIOI
[l
Input Output -
O

* Formulation
— Input

* Input graph A } Minimize task-specific
* Model parameters 6 loss function [(A,Y, 0)
— Output: mining results Y

* Examples: ranking vectors, class probabilities, embedding

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Classic Graph Mining Algorithms [yl

Examples of Classic Graph Mining Algorithm

Mining Task Task-specific Loss Function () Mining Result Y~ Parameters

PageRank mincr’(I— A)r+ (1 —o)|lr — e|lf PageRank vector r damping factor ¢
r teleportation vector e
Spectral min Tr (UTLU _
P . U ( ) eigenvectors U # clusters k
Clustering s.t. UTu=1

n

Ali, j] (logg (X[, : 1X[i,: 17 ing dimensi
Z ]]( gg(—X[j,: IX[i,:] )) embedding matrix X embeddlr.1g dimension d
=1 # negative samples b

i
bE;r_p [log g(=X[j’,: 1X[i,: 1M1

M:

[

LINE (1st) Xn

+.ﬂ
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.



InFORM: Individual Fairness on GRaph Mining Z‘IDEHE?

* Research questions
RQ1. Measure: how to quantitatively measure individual bias?
RQ2. Algorithms: how to ensure individual fairness?
RQ3. Cost: what is the cost of individual fairness?

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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RQ1l: InFoRM Measure

* Questions
— How to determine if the mining results are fair?
— How to quantitatively measure the overall bias?

* Input
— Node-node similarity matrix S
* Non-negative, symmetric
— Graph mining algorithm [(A, Y, 0)
* Loss function I(-)
e Additional set of parameters 6
— Fairness tolerance parameter ¢

* Output

— Binary decision on whether the mining result is fair

— Individual bias measure Bias(Y, S)

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Mining Results: Y
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Y[i, :] <

Yl :] <

Diff(Y[i,: ], Y[j,:]) <

tolerance

S[i, j]
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InNFORM Measure: Formulation

* Principle: similar nodes = similar mining results

990000500

* Mathematical formulation

€
IY[E,: ] =Y, lIE < o=
S[i,J]
— Intuition: if S[i, j] is high, ﬁ is small > push Y[i,:] and Y[j, : ] to be more similar
— Observation: inequality should hold for every pairs of nodes i and j
« Limitation: too many constraints - too restrictive to be fulfilled

zn: Zn:”Y :11ES[i, j] < me
i=1 j=1 II /

2Tr(YTLgY) < 6

Vi,j=1,...,n

(1) For any node pair (i, )
IY[i,:] = Y[, 1IIES[i ] < e

e . (2) Sum it up for all node pairs
* Relaxed criteria

— m: number of edges in the graph
— 0 =me

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through Awareness. ITCS 2012.




InNFORM Measure: Solution A

* InFORM (Individual Fairness on GRaph Mining)
— Given: (1) a graph mining result Y; (2) a symmetric similarity matrix S; and (3) a fairness tolerance 6
— Y is individually fair w.r.t. S if it satisfies

)
T
Tr(Y'LsY) <
— Overall individual bias is Bias(Y,S) = Tr(YTLgY)

Similarity matrix S

[1X2 5384
€| 2 [os]o01]os Pairwise bias matrix

Y[i,:] - YUj,: I3[, ]

€| os| 1 [02]03 [“ F
_Q Q X O
3 gl ] | [ Bias €| 0000 | 0.054 | 0.000 | 0.003 . s
: um up Overall bias
Hlo3|o03]02] 1 Iculat
- calculation @} 0.0s4 | 0.000 | 0.018 | 0.048 » 2Tt (YTLgY) = 0.125

Input graph A Ranking results Y “E17| 0.000 | 0.018 | 0.000 | 0.002

| o2 )| 0.003 | 0.048 | 0.002 | 0.000

w Graph ranking )| os

ﬁ
£rl| o2
(4 J 5

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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RQ2: InFORM Algorithms

* Question: how to mitigate the bias of the mining results?

E

* Input
— Node-node similarity matrix S
— Graph mining algorithm [(A, Y, 0)
— Individual bias measure Bias(Y, S)
* Defined in the previous problem (InFORM Measures)

00000500

* Qutput: revised mining result Y™ that minimizes
— Task-specific loss function [(A, Y, 0)
— Individual bias measure Bias(Y, S)

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Individual Bias Mitigation f‘ml

* Graph mining pipeline

Input graph A Mining model w/ parameter 6 Mining results Y
510101 N
Input Output -
t

* Observation: bias can be introduced/amplified in each component
— Solution: bias can be mitigated in each part

 Algorithmic frameworks
— Debiasing the input graph
— Debiasing the mining model mutually complementary
— Debiasing the mining results

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Method #1: Debiasing the Input Graph Z{lu;ﬂ!

* Goal: bias mitigation via a pre-processing strategy

e Intuition: learn a new topology of graph A such that
— A is as similar to the original graph A as possible
— Bias of mining results on A is minimized

* Optimization problem P Consistency in graph topology
_ ~ 2
min J = ||A — AHF + aTr(Y'LgY)
A ~ N ..
s.t. Y =argminy [(AY,0) “*merue
* Challenge: bi-level optimization
— Solution: exploration of KKT conditions

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Mei, S., & Zhu, X. (2015). Using Machine Teaching to Identify Optimal Training-set Attacks on Machine Learners. AAAI 2015.




Method #1: Problem Reduction

* Considering the KKT conditions,
min | = ||A - Al + aTr(Y"LgY)
s.t. Oyl(AY,0) =0

* Proposed method
(1) Fix A (A = A at initialization), find Y using current A
(2) Fix Y, update A by gradient descent
(3) Iterate between (1) and (2)

e Problem: how to compute the gradient w.r.t. A?

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Method #1: Gradient Computation @T‘IDLH!
Key component to calculate, H matrix :

« Computing gradient w.r.t. A _/
d] ~ - Y
—=2(A—A)+a|Tr| 2YLs—=—
dA dAli, ]
( T
0 d 0
dJ —,{ + (—[) — diag (—,]v) , if undirected
—~ -J]0A \0A oA
dA d] 1
—, if directed
. OA
— Y satisfies BYI(K, Y, 9) =0
-H= [Tr (Z?LS ag[‘i(j])] is a matrix with H[i, j] = Tr (Z?LS ag[‘i(j])

* Question: How to efficiently calculate H?

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Instantiation #1: PageRank Z‘IDLHE

* Goal: efficient calculation of H for PageRank
* Mining results

r=(1-c)Qe
* Partial derivatives

H=2cQ Lsr

-Q=(0-cA)! 2¢QTLgr
* Time complexity X
— Straightforward: 0(n?)
—OQurs: O(my + m, +n)
* mq: number of edges in A

* mM,: number of edgesin S
* n: number of nodes

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab 1999.




Instantiation #2: Spectral Clustering

Goal: efficient calculation of H for spectral clustering

Mining results
U = eigenvectors with k smallest eigenvalues

* Partial derivatives Vectorize diag(M;Lsu;u;")
and stack it n times Low-rank
=2 Y{dlag(M Lsu;u] )1,xn|—[M;Lsu;uj|)
— (4;,u;) = i-th smallest eigenpair =
- M; = (41— Ly)* M;Lgu;
* Time complexity X

— Straightforward: 0(k?(m + n) + k3n + kn3)
— Ours: O((k + r)(my + n) + k(m, + n) + (k +1)%n)
* k:number of clusters

* r:number of largest eigenvalues
* mq: number of edgesin A

* m,: number of edgesin S
* n:number of nodes

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Ng, A., Jordan, M., & Weiss, Y. (2001). On Spectral Clustering: Analysis and an Algorithm. NeurIPS 2001.
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Instantiation #3: LINE (1st)

Goal: efficient calculation of H for LINE (1st)

Mining results

T(Ali, j1+ A[j,i])
3/4 3/4
dl-dj + di dj
— d; = outdegree of node i, T = }1-, d?” and b = number of negative samples
Element-wise in-place calculation Vectorize diag(BLg)
H= Zf(g n KT) o Lg|— 2diag(BLs)1an and stack it n times
— f(+) calculates Hadamard inverse, o calculates Hadamard product
3 _ T T . .
- B=2f(d%*(d*) +[d1yc]) + £ (d/4(dY*)" +[dLyy]) with d¥[i] = df
Time complexity . ~
] 3 Stack d n times
— Straightforward: O0(n>)
— Ours: O(my + my, +n)
* mq: number of edgesin A

* m,: number of edgesin S
* n:number of nodes

Y[i,:]Y[j,:]F =log —logh

Partial derivatives

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
E [2] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale Information Network Embedding. WWW 2015.
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Method #2: Debiasing the Mining Model f‘m!

* Goal: bias mitigation during model optimization

* Intuition: optimizing a regularized objective such that

— Task-specific loss function is minimized
— Bias of mining results as regularization penalty is minimized

o Optimization problem /Task—specific loss function
min ] = [(AY,0) + (xTr(YT‘L\SY)

. Bias measure, convex
e Solution
8] _ 9I(AY,0)

— General: (stochastic) gradient descent prvia + 2aLgY
— Task-specific: specific algorithm designed for the graph mining problem

* Advantage
— Linear time complexity incurred in computing the gradient

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Instantiations: Debiasing the Mining Model ot

* PageRank

— Objective function: min cr” (I — A)r + (1 — ¢)||r — e||%# + ar”Lgr
r

— Solution: r* = ¢ (A — %LS) r + (1—c)e
* PageRank on new transition matrix|A — %LS
+ IfLg=1-S§,thenr’ = (Z—A+-—S)r + e
* Spectral clustering
— Objective function: min Tr(UTLAU) + aTr(UTLgU) = Tr(UTLp44sU)

— Solution: U™ = eigenvectors of L, o5 With k smallest eigenvalues
e Spectral clustering on an augmented graph A + aS

e LINE (1st)

— Objective function )
max log g(x;x;) + bE;rcp |log g(—x;x])| — al|x; — Xj||FS[i,j] Vi,j=1,..,n

Xi,XJ
— Solution: stochastic gradient descent

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Method #3: Debiasing the Mining Results Z‘IDLH!

* Goal: bias mitigation via a post-processing strategy

* Intuition: no access to either the input graph or the graph mining model
Consistency of mining results, convex Bias measure, convex

* Optimization problem N
min | = [[Y =Y||% + aTr(Y'LgY)

$

Y

— Y is the vanilla mining results (1) Convex aslongasa = 0

(2) Global optima by% =0

e Closed-form solution B
I+aS)Y =Y

— Solve by any linear system solvers (e.g., conjugate gradient)

* Advantages
— No knowledge needed on the input graph
— Model-agnostic

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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RQ3: InFORM Cost @T‘IDLH!

* Question: how to quantitatively characterize the cost of individual fairness?

* Input
— Vanilla mining result Y

— Debiased mining result Y*
e Learned by the previous problem (InFORM Algorithms)

e Output: an upper bound of ||Y — Y*||¢

* Debiasing methods
— Debiasing the input graph
— Debiasing the mining model
— Debiasing the mining results =—> main focus

depend on specific graph topology/mining model

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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InNFORM Cost: Debiasing the Mining Results e/

* Given
— A graph with n nodes and adjacency matrix A
— A node-node similarity matrix S
— Vanilla mining results Y
— Debiased mining results Y* = (I + aS) ™'Y

* If ||S — Al|r = A, we have
IV = Il < 2ayi (4 + I

* Observation: the cost of debiasing the mining results depends on
— The number of nodes n (i.e., size of the input graph)

=P could be small due to (approximate) low-rank structures in real-world graphs

=P could be small if A is normalized

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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InFORM: Experiment

* Graph mining task: PageRank

* Observation: effective in mitigating bias while preserving the performance of the vanilla

algorithm with relatively small changes to the original mining results
— Similar observations for spectral clustering and LINE (1st)

Debiasing the Input Graph

Datasets |

Jaccard Index

|

Cosine Similarity

Diff KL Prec@50 | NDCG@50 | Reduce | Time Diff KL Prec@50 | NDCG@50 | Reduce | Time
Twitch | 0.109 | 5.37 x 10* 1.000 1.000 24.7% | 564.9 | 0.299 | 5.41x1073 | 0.860 0.899 62.9% | 649.3
PPI 0.185 | 1.90 x 1073 0.920 0.944 43.4% | 584.4 | 0.328 | 8.07 x 1073 0.780 0.838 68.7% | 636.8
Debiasing the Mining Model
Ditaiet ] Jaccard I'@S’f,,,,,,, 3 l Cosine Similarity
Diff KL Prec@50 | NDCG@50 | Reduce | Time Diff KL Prec@50 | NDCG@50 | Reduce | Time
Twitch 0.182 | 4.97 x 107> 0.940 0.958 62.0% 16.18 | 0.315 | 1.05 X 102 0.940 0.957 73.9% 12.73
PPI 0.211 | 4.78 x 10~° 0.920 0.942 50.8% 10.76 = 0.280 | 9.56 x 10> 0.900 0.928 67.5% 10.50
Debiasing the Mining Results
Ditasets ] Jaccard Index ] Cosine Similarity
Diff KL Prec@50 | NDCG@50 | Reduce | Time Diff KL Prec@50 | NDCG@50 | Reduce | Time
Twitch 0.035 | 9.75x 1074 0.980 0.986 33.9% 0.033 0.101 | 5.84 x 107> 0.940 0.958 44 6% 0.024
PPI 0.045 | 1.22x 107> 0.940 0.958 27.0% 0.020  0.112 | 6.97 x 10~ 0.940 0.958 45.0% 0.019

[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
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Recap: Counterfactual Fairness [yt

counterfactual version

* Definition: same outcomes for|‘different versions’|of the same candidate
Pr()?5=51 =cCls =5, x = x) = Pr(fls=52 =cCls =5,,x = x)

- Pr()?5=sl =cCls =51, x = x): version 1 of x with sensitive demographic s

- Pr(fls=52 =Cls =5,,x = x): version 2 of X with sensitive demographic s,
* Intuition: perturbations on the sensitive attribute should not affect the output

e Example: causal graph of loan approval

education
’ history
Unfair! ‘
gender and race can affect '
loan approval decision )w
\ annual

salary

approved

[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. NeurlPS 2017.
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Preliminary: Stability Z‘lu;ﬂl

* Definition: perturbations on the input data should not affect the output too
much

 Mathematical formulation: Lipschitz condition
di(M(x),M(%)) < Ld,(x, %)
— M: a mapping from input to output
— d: distance metric for output
— d,: distance metric for input
— L: Lipschitz constant
— X: perturbed version of original input data x

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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Counterfactual Fairness vs. Stability [yt

* Given
— A: binary adjacency matrix of a graph
— X,,: feature vector x,, of a node u
- b, = [xu; Alu, :]]: information vector of node u
— i: perturbed version of node u with information vector by,
 Perturbation(s) on x,, or Afu, :]
— b,,: information vector of node i

— 1i°: counterfactual version of node u
* Modification on the value of sensitive attribute s in x,,

— ENC(u): an encoder function that learns the embedding of node u

 Counterfactual fairness
|IENC(u) — ENC(ﬁ)Ilp =0

 Stability -
IENC(w) — ENC@)l, < L|[by — byl

* Question: can we learn node embedding that is both counterfactually fair and stable?

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Contrastive Learning-based Framework et

Input Graph
Label 1
Label 2

\ X Drop edge
Sensitive attribute (s): _—

{female,male}

L
v

Node/Edge Perturbation

Counterfactual Graph

Change the value of
a sensitive attribute

| Perturb the edge and
attribute of node u v
maximize similarity among embeddings of u, #, #i°

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.

I




NIFTY: Model Architecture [Vl

* Given

— hgk): representation of node u at k-th layer
— NV (u): neighborhood of node u

- Wc(lk): self-attention weight matrix at k-th layer
(k)

- W = ||w(C'L‘)|| : Lipschitz-normalization on W'
a
p

W)

: spectral norm of Wék)
p

— WT(lk): weight matrix associated with the neighbors of node u
e The k-th NIFTY layer learns node representation by
h(o = ¢ (Wék—l)hgk—l) + WD z hgk—l))
VvEN (u)
* NIFTY encoder ENC(-) = a stack of K NIFTY layers

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Contrastive Loss el

e Goal: maximize similarity among embeddings of u, i, #i°

* Augmented graph: either (1) edge/attribute perturbed graph or (2) counterfactual graph with modification on the value
of sensitive attribute

* Formulation
D (FC(zu), SG(zZ“g)) +D (Fc(ziug), SG(zu))
2

LS (u, ﬁaug) =

— D(:,"): cosine distance

— 7?Y8: counterpart of node u in the augmented graph
~ z,,Z, °: representation of nodes u and %248 learned by NIFTY encoder
— FC(): a fully-connected layer for embedding alignment

— SG(-): stop-grad operator, stop calculating the gradient with respect to its input

e L FC(z,) and z;, © are similar
* Intuition: minimize L

FC(ziug) and z,, are similar

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Overall Loss Function f{ml

e Overall loss function
L = (1 — A)Lc + A(Eu [LS (u, ﬂ)] + [, [Ls (u: ﬂs)])
— A: regularization hyperparameter
— L.: task-specific loss
* E.g., cross-entropy loss for node classification
— E, [ Ls(u, ii)]: similarity loss of original graph and the edge/attribute perturbed graph
— E,[Ls(u, ii%)]: similarity loss of original graph and the counterfactual graph

* Intuition: jointly minimize
— The task-specific loss
— Distance among embeddings of u, &t and #°, for each node u

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Counterfactual Fairness A

* Given
— ENC(-): a K-layer NIFTY encoder

o Wc(lk): self-attention weight matrix at k-th layer
— S:a binary-valued sensitive attribute s

— u:anode u in the graph
— 11°: the counterfactual version of node u by flipping the value of s

* NIFTY is counterfactually fair with the unfairness uppgr bounded as follows
IENC(u) — ENC(@5)]|,, < 1_[ HWCE")HP
k=1

 Remarks
— Upper bounded counterfactual unfairness (i.e., |[ENC(u) — ENC(%°)]| )

— Normalized Wék) — counterfactually fair ENC(u)

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Stability DA

* Given
— ENC(:): a K-layer NIFTY encoder

o Wc(lk): self-attention weight matrix at k-th layer
— S: a binary-valued sensitive attribute
— b,,: a node u with information vector b,,
— b,,: perturbed version i of node u with information vector

* NIFTY learns stable node embedding
|IENC(u) — ENC(@)]|,, < 1_[ [WeO| b ~Bull,

* Remarks
— Lipschitz constant = Hk 1 Hw(k) H

— Normalized W( ) > small LIpSChItZ constant - stable ENC(u)

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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NIFTY: Experiment [yt

* Observation: NIFTY improves both fairness and stability

(a) German credit graph (b) Recidivism graph (c) Credit defaulter graph
30 20 25 T
% 0 15 20
g 20 g 8
E 15 €10 E K
€ 10 @ B £ N € 10
) 5 5 =5 -
5 [P 5 . " @I =
20 50 60
50
15 40 j
2" 25 240
3 10 8 - O] 230
- @ @ 220 T 'm . 2 20 £
S 10 - == 2 10
-— , ===
0 R — 0 0 . =

1 GCN B NIFTY-GCN [1 GIN B NIFTY-GIN B JK B NIFTY-JK
[ SAGE [ NIFTY-SAGE [ INFOMAX B NIFTY-INFOMAX

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
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Overview of Part Il DA

Other Fairness on Graphs

l l

Counterfactual Fairness Degree Fairness

[ NIFTY ] SL-DSGCN

-

Check the details of GEAR in the longer version of this tutorial at KDD’22
Algorithmic Fairness on Graphs: Methods and Trends
http://jiank2.web.illinois.edu/tutorial/kdd22/algofair on graphs.html



http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html
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Preliminary: Graph Convolutional Network (GCN) e

* Key idea: iteratively performing neighborhood aggregation for node representation learning

* Formulation: graph convolution

(I+1) _ l )
h, =g WO ( a; th )
JEN;U{i}

~ h%: the representation of node j at [-th layer

] Hidden layer Hidden layer
- w:. weight parameters at [-th layer o) (
- a;; = Jarija T weight of the edge between node i w.r.t. node j e e
— d;, d;: degree of node i and node j, respectively eat . ’
— IV;: neighborhood of node i e — ReLU | o/

S o °© T e .\. ° _’@_’ ° .\. *

[1] Kipf, T. N., & Welling, M. (2017). Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.
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GCN Analysis: Error Rate vs. Node Degree e

* Observation: low-degree nodes get higher error rate

0.4- Cora Citeseer

05
9 o3 Qo4
o o
§ 0.2 §0'3'
g ([T 111N
011 I
0.11
‘Degree Degree
Pubmed Reddit
0.30 os
0.28
S 0.26 %0'4
 0.24 ] 03
go.zz go.z-
I B
_ [ |
° Questlons Degree 0 15 30 Détarego 75 90

— Why is the correlation between error rate and degree bad?
— why should we concern about low-degree nodes?

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Degree Distributions of Real-world Graphs

)

* Degree distribution is often long-tailed
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* GCN might

O 15 30 45 60 75 90

— Benefit a relatively small fraction of high-degree nodes
— Overlook a relatively large fraction of low-degree nodes

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C,, ...

I

& Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.




GCN Limitations: Degree Bias f{ml

* Key steps in GCN training
— Learn node representations by message passing
— Train the model parameters by backpropagation

* Question #1: does GCN fail because of the message passing schema?

— Hypothesis #1: high-degree nodes have higher influence to affect the training of GCN
on other nodes

* Question #2: does GCN fail during the backpropagation?
— Only information of labeled nodes can be backpropagated to its neighbors
— Hypothesis #2: high-degree nodes are more likely to connect with labeled nodes

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Hypothesis #1: Influence of High-Degree Nodes e

* Given
— Viabeled: @ set of labeled nodes Vigpeled
~ W the weight of L-th layer in an L-layer GCN

— d;: degree of node i
— X;: input node feature of node i

- hl@: output embeddings of node i learned by the L-layer GCN
* Influence of node i to node k

E [oh{" /0x, | o< Jdid W™
* Influence of node i on GCN training

s= > ||E[on® /o] < yEIW®S] YV

k€V1abeled k€V1abeled

* Remark
— For two nodes i and j, if d; > d;, then S(i) > S(j)
— Node with higher degree will have higher influence on GCN training

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Hypothesis #1: Visualization of Node Influence Z‘lu;n!

 Goal: visualize the influence score S(-) for each node
* Observation: high- degree nodes have hlgher influence score
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* Question #1: how to mitigate the impact of node degree?

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Hypothesis #2: Ratio of Labeled Neighbors f‘m!

* Observation: high-degree nodes are more likely to have labeled neighbors

Cora Citeseer
Jz:.ll|||"| : .IIIII|I||
Degree Degree .
0.04 Pubmed Reddit
jm|I|II|||I|J
Degree 0 15 30 Déérego 75 90
* Question #2: how to ensure enough training signals for low-degree nodes

receive

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Framework [Vl

 Strategy: pre-training + fine-tuning

* Pre-training
— Mitigate the impact of node degree by degree-specific GCN
— Pre-train

* A Bayesian neural network (BNN) with true labels for further use during fine-tuning

* An annotator through label propagation for pseudo-label generation
Degree-Specific GCN

P(-)

BNN (I
{ Annotator J MM W\W\(,W

Pseudo labels

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Degree-specific Graph Convolutional Network (DSGCN) ZUDEH!

* Key components
— A stack of degree-specific graph convolution layer for embedding learning
— A fully-connected layer for node classification

* Given: the settings of [-th graph convolution layer and
— d;: the degree of node i

- WC%_): the degree-specific weight w.r.t. degree of node j
* Degree-specific graph convolution layer

(1+1) l (DY 1, D
hi —O’( z aU(W()+Wd])hJ )

JEN jU{i}
* Question: how to generate the degree-specific weight?

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Degree-specific Weight Generation f{lnm!

* Hypothesis: existence of the complex relations among nodes with different degrees
 Method: weight generation with recurrent neural network (RNN)

* Given
— ARNN
- W,El) = degree-specific weight of degree k at [-th layer

Weight of degree k + 1 at [-th layer is WISQ1 = RNN (w,ﬁ”)

RNN
Wo {Wl — W, — W3 _’W4)
I

Node Features |

gz/l\x2 ®i§

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Framework [Vl

 Strategy: pre-training + fine-tuning

* Fine-tuning
— Provide pseudo training signals to low-degree nodes for self-supervision
Soft + True Labels (V1°)

() Student
&
—] &L
@
Teacher N
BNN

-

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Fine-Tuning with Self-Supervised Learning Z‘IDEHE?

e Student network: degree-specific GCN (DSGCN)

* Teacher network: Bayesian neural network (BNN)
—Provide additional|softly-labeled set|for self-supervision in student network

Nodes labeled identically by the pseudo-label annotator and BNN
—Exponentially decay the learning rate of labeled and softly-labeled nodes

Soft + True Labels (V%)

by uncertainty score
. . ) () Student ~h(-
* Higher uncertainty score - smaller learning rate ﬁ
Q
- &5
D) Teacher S

— MVJLIM‘J“WM"l"wﬁ

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Effectiveness Results

e Observations

— Increased label rate implies higher classification accuracy

— Self-supervision provides useful information (i.e., high accuracy when the label rate is

low)
— SL-DSGCN outperforms all baseline methods

Dataset Cora Citeseer PubMed
Label Rate 0.5% % 2% 3% 4% 0.5% 1% 2% 3% 4% 0.03% 0.06% 0.09%
LP 29.05 38.63 53.26 70.31 7347 | 32.10 40.08 42.83 4532 49.01 | 39.01 48.7 56.73
ParWalks 37.01 4140 50.84 58.24 63.78 | 19.66 23.70 29.17 35.61 42.65 | 35.15 40.27 51.33
GCN 35.80  46.00 60.00 71.15 75.68 | 34.50 4394 5442 56.22 58.71 | 47.97 56.68 63.26
DEMO-Net | 33.56 40.05 61.18 7280 77.11 | 36.18 43.35 53.38 56.5 59.85 | 48.15 57.24 62.95
Self-Train 43.83 5245 6336 70.62 77.37 | 42.60 46.79 5292 5837 6042 | 57.67 61.84 64.73
Co-Train 40.99 52.08 64.27 73.04 7586 | 4098 56.51 5240 57.86 62.83 | 53.15 59.63 65.50
Union 45.86 53.59 64.86 73.28 77.41 | 4582 5438 5598 60.41 59.84 | 58.77 60.61 67.57
Interesction | 33.38 49.26 62.58 70.64 77.74 | 36.23 55.80 56.11 58.74 62.96 | 59.70 60.21 63.97
M3S 50.28 58.74 68.04 75.09 78.80 | 4896 53.25 5834 6195 63.03 | 59.31 65.25 70.75
SL-DSGCN | 53.58 61.36 70.31 80.15 81.05 | 54.07 56.68 59.93 62.20 64.45 | 61.15 65.68 71.78

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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SL-DSGCN: Fairness Results DA

e Observations: degree-wise classification accuracy
— SL-DSGCN > DSGNN > GCN for all degrees, especially low degrees

Cora 0. Citeseer
807 mm GCN B GCN
DSGNN 70 - DSGNN

5* SL-DSGNN > SL-DSGNN
S 60 - Y60 -
e —
S5 Ser
W 050
O

40 - O
< <40 -

20 - I 307 I I

8 10
Deg ree Deg ree

[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
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Overview of Part Ill Z‘lm;ﬂl

Other Fairness on Graphs

l l

Counterfactual Fairness Degree Fairness

NIFTY [ SL-DSGCN ]




Limitations: SL-DSGCN Z‘IDLHE

* SL-DSGCN
— Degree-specific weight: learn degree-specific weights, generated by RNN
— Self-supervised learning: generate pseudo labels for additional training signals

* Limitation 1: additional number of weight parameters
— Weight parameters of RNN for degree-specific weight generation

S . High cost of
 Limitation 2: change(s) to the GCN architecture computational

— Degree-specific weight generator resources
— Self-supervised learning module

* Question: how to mitigate degree-related unfairness without

— Hurting the scalability of GCN
— Changing the GCN architecture?

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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Fairness = Just Allocation of Utility A

* Intuition: utility = resource to allocate

* Expected result: similar utility (accuracy) for all nodes regardless of their
degrees

Allocation of Utility (Accuracy)

ge Accuracy
.
[ ]
[ ]

Average Accuracy

-
Avera

% > - - m - m
Node Degree deg.=1 deg.=2 deg.=3 deg.=4 deg.=max

*‘ter Debiasing

Fair Allocation of Utility (Accuracy)
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ge Accuracy
.
[ ]
[

deg.=1 deg.=2 deg.=3 deg.=4 deg.=max

Ni;de Degree
 Question: how to define such fairness?

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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Recap: Rawlsian Difference Principle [yl

* Origin: distributive justice
e Goal: fairness as just allocation of social welfare

“Inequalities are permissible when they maximize [...] the
long-term expectations of the least fortunate group.”

-- John Rawls, 1971

* Intuition: treat utility of GCN as welfare to allocate

— Least fortunate group - group with the smallest utility
— Example: classification accuracy for node classification

[1] Rawls, J. (1971). A Theory of Justice. Press, Cambridge 1971.
E * Justice as fairness » Well-ordered society

» Justice is a virtue of instituitions * Designed to advance the good of its members
* Free persons enjoy and acknowledge the rules * Regulated by a public conception of justice




RawlsGCN: Problem Definition il

* Given
— G = (A X): an undirected graph
— 0: weights of an L-layer GCN
— J: a task-specific loss

* Find: a well-trained GCN that

— Minimizes the task-specific loss
— Achieves a fair allocation of utility for the groups of nodes with the same degree

* Key question: when is the allocation of utility fair?
Fair Allocation of Utility (Accuracy)

Q1.0+ EE) e o000 o000 Q™

e ® o0, .. ..ue .
S e T i Ja— @
8 0.8 4 at%. 8.0 .. [ ] o
<L 0.7 .

Dos -
bn06

L

Average Accuracy

20 30 40 50 _ _ ~ . -
< Node Degree deg.=1 deg.=2 deg.=3 deg.=4 deg.=max

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Fair Allocation of Utility f‘m!

* Key idea: consider the stability of the Rawlsian difference principle

* How to achieve the stability?
— Keep improving the utility of the least fortunate group

* When do we achieve the stability?
— No least fortunate group
— All groups have the balanced utility

* Challenge: non-differentiable utility
— Workaround: use loss function as the proxy of utility
— Rationale: minimize loss in order to maximize utility

* Goal: fair allocation of utility - balanced loss
* Question: why does the loss vary after training the GCN?

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Source of Unfairness A

* Intuition: understand why the loss varies after training

* What happens during training?
— Extract node representations and make predictions
— Calculate the task-specific loss |

— Update model weights 0 by the gradient Z—é & key component for training

* Question: is the unfairness caused by the gradient?

Graph Convolution Graph Convolution

1y Hidden | (@
Input Graph | 5 \3 Representation | 2 \3 | Output
(- : RelU o I RelU | — Loss |
o 4 :m-l».( > _/ =t n::+./ > /e C e/ X
2 3 2 3 2 3

. 0]
Backpropagating 36

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Gradient of Model Weights gllDl;ﬂ!

e Given

— An undirected graph G = (A, X) with A = ﬁ_%(A + I)ﬁ_%
— An arbitrary [-th graph convolution layer

* Weight matrix W

« Hidden representations before activation E& = AH¢-Dw®
— A task-specific loss |

* The gradient of J w.r.t. W
o _ ey ar 2
oW

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Unfairness in Gradient A

Column sum of i-th column

Gradient of loss w.r.t. weight Row sum of j-th row
} ~
D (row)
dz (DI z dz(I
(col) _ -1 N __9J dz(1) =2
- 0 = (Bavo [H( i ]D OEDIi,] 0 ( ), plcol) , p(col)
(&0 co co
(row) _ =017 .1\ T 9] » + 1,77 + 1
- 7 = (O, B gt @ © oW
* Intuitions  sampling from j-th neighborhood =1 HB)=1 Highien ImpeTtanEedUs taihighen Uegres
(col) (row) . ) . ]Il(,ml) ]II(,COD Biased direction —
- I;7 7 and I > The directions for gradient descent o 4. 4. (a) = 2 oir direction Favor node a by( ;
. co
— dz (i) and d3(j) > The importance of the direction =~ Nodeb:da(b) =1 . being closer to 5
[Lco > > 2]I(col)
d ngher degree 9 more fOCUS on that direCtiOI’] Node degree takes no?effect Node degree is considered”
. . . .~ 7 Coauthor- -Physics ¢ s{ Amazon-Computers | | Amazon-Photo °
* Symmetric normalizationin A PR < ] N
. ) £ 2.5 ° c 6 o ° = e®
— Normalize the largest eigenvalue, not degree 9 20 g | & 2] ’
—~ 00 15 ) e |
— High degree in A - high degree in A - a r 82
* Solution: doubly stochastic matrix Apg ke e me b wm e ww b s
Degree in A Degree in A Degree in A

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Doubly Stochastic Matrix Computation Z‘lu;n!

J

owd
— Intuition: enforce row sum and column sum of A to be 1

— Solution: doubly stochastic normalization on A

* How to mitigate unfairness in ?

* Method: Sinkhorn-Knopp algorithm
— Key idea: iteratively normalize the row and column of a matrix
— Complexity: linear time and space complexity
— Convergence: always converge iff. the matrix has total support

 Existence for GCN: the Sinkhorn-Knopp algorithm always finds the unique
doubly stochastic form Apg of A

~ ~_1 ~_1
—-A=D 2(A+1)D >
— D = degree matrix of A + I for a graph A

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.

I




RawlsGCN: A Family of Debiasing Methods f‘m!

e Gradient computation

Gw ) = (ue)Ar J

dW® DS 9EM

— Key term: A — doubly-stochastic normalization of A

* Proposed methods

— RawlsGCN-Graph: during data pre-processing, compute KDS and treat it as the input of
GCN

— RawlsGCN-Grad: during optimization (in-processing), treat A\DS as a normalizer to
equalize the importance of node influence

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN-Graph: Pre-processing [yl

* Intuition: normalize the input renormalized graph Laplacian into a doubly
stochastic matrix

* Key steps
1. Precompute the renormalized graph Laplacian A
2. Precompute A\DS by applying the Sinkhorn-Knopp algorithm
3. Input KDS and X (node features) to GCN for training

Graph Convolution Graph Convolution
E Hidden Layer : E Hidden Layer
Doubly Stochastic | /.\ E Hidden : /.\ !
Input Graph A Graph Ay | @ A ' Representation | 2 ! Output
5'";‘::;:t:r:5’° - E RelU ! - E RelU o Loss |
1 1 1 1 1 1
Y O — I — .( = __/ =T ED-b./ =/ = eee w1 C =y /' X
2 3 2 3 \ 3 | 2 3 ! 3 | 2 3
\ 1 ' 1

| : |

@ e | 2 e |

____________________________________ 5
f f Backpropagating %

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN-Grad: In-processing ot

* Intuition: equalize the importance of node influence in gradient computation

* Key steps
1. Precompute the renormalized graph Laplacian A
2. Input A and X (node features) to GCN
3. Compute KDS by applying the Sinkhorn-Knopp algorithm
4. Repeat until maximum number of training epochs

. . a] a-1N\TzT 9] .~

= _— F ------------- 1
* Compute the fair gradient (aw(l))fair (H ) Apg SE@ YSing Aps : Dou:lys:}:hasﬁc :
) ) ) aj 1 —E2 s |
* Update W'" by the fair gradient w0, Sinkhorn-Knopp Algorithm I = I
air  mg ™= (] 1
__GroghComvolution Graph Comvohution__ A\ :
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: : ) : : 1 a]> 1
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i | | Rely ! o : RelU op Loss J I
1 ! 1 | 1 ! 1 : 1 I
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[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Effectiveness Results

e Observations
— RawlsGCN achieves the smallest bias

— Classification accuracy can be improved
* Mitigating the bias = higher accuracy for low-degree nodes - higher overall accuracy

Method Coauthor-Physics Amazon-Computers Amazon-Photo
Acc. Bias Acc. Bias Acc. Bias

GCN 93.96 £ 0.367 0.023 £ 0.001 & 64.84 +£0.641 0.353 £0.026 79.58 £1.507 ' 0.646 £+ 0.038

DEMO-Net 77.50 £ 0.566 = 0.084 £ 0.010 26.48 +£3.455 0.456 £ 0.021 39.92 +1.242 0.243 £ 0.013

DSGCN 79.08 £ 1.533 = 0.262 £ 0.075 27.68 £ 1.663 = 1.407 £ 0.685 26.76 +£3.387 = 0.921 £ 0.805

Tail-GNN OOM OOM 76.24 +£1.491 = 1.547 £ 0.670 86.00 +£2.715 = 0.471 + 0.264

AdvFair 87.44 +£ 1.132 = 0.892 £ 0.502 53.50 +£ 5.362  4.395 £ 1.102 75.80 £3.563 @ 51.24 + 39.94

REDRESS 94.48 +0.172 | 0.019+0.001 80.36 + 0.206 | 0.455+0.032 89.00 + 0.369 | 0.1§6 +0.030

RAWLSGCN-Graph (Ours) 94.06 +0.196 /7 0.016 £ 0.000 \ 80.16 £ 0.859 /70:121 &+ 0.010 \ 88.58 + 1.116 /7 0.071 + 0.006
RAWLSGCN-Grad (Ours) 94.18 + 0.306().021 + 0.002>74.18 + 2.5306.195 + 0.0Z‘D83.7O + 0.6726.186 + 0.068>

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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RawlsGCN: Efficiency Results

I

* Observation: RawlsGCN has the best efficiency compared with other baseline
methods

— Same number of parameters and memory usage (in MB) with GCN
— Much shorter training time (in seconds)

I

Method # Param. | Memory | Training Time
GCN (100 epochs) 48, 264 1,461 13.335
GCN (200 epochs) 48, 264 1,461 28.727
DEMO-Net 11, 999, 830 1,661 9158.5
DSGCN 181, 096 2,431 2714.8
Tail-GNN 2, 845, 567 2,081 94.058
AdvFair 89, 280 1,519 148.11
REDRESS 48, 264 1,481 291.69
RAWLSGCN-Graph (Ours) 48, 264 1,461 11.783
RAwLSGCN-Grad (Ours) 48, 264 1,461 12.924

[1] Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawIsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.
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Fairness on Dynamic Graphs e

* Motivation: networks are dynamically changing over time
— New nodes: new accounts on social network platforms (e.g., Facebook, Twitter)
— New edges: new engagements among people on social networks (e.g., follow, retweet)

 Trivial solution: re-run the fair graph mining algorithm from scratch at each timestamp

° . ° =0 = =2

* Limitations t = t
— Time-consuming to re-train the mining model s K1 &
-\ -\ N

— Fail to capture the dynamic fairness-related information

.9/.

/

e Do
.0/.

/

> )

 Questions

— How to efficiently update the mining results and
ensure the fairness at each timestamp?

— How to characterize the impact of dynamics over the trai”i"g‘ trai“i”g‘ trai""‘!
bias measure?

Fair Fair Fair

N ”

\
New node

GNN GNN GNN




Fairness on Dynamic Graphs

* Possible method: fair graph mining model with time-dependency learning module
— Efficient update: dynamic tracking module
— Temporal information learning: gated recurrent unit (GRU)

t=0 t=1 t=2
- - -
N N N
- 2 S.® % J} New edge
-\‘ -\‘ -\‘
lgd/New edge 2/

training trajning _ training
Time-dependency Time-dependency
. . | .
Fair learning Fair earning Fair
GNN GNN

GNN

b



Benchmark and Evaluation Metrics f{lnm!

* Motivation: there is no consensus on the experimental settings for fair graph
mining
— Which graph(s) we should use for fair graph mining?
— What could be the sensitive attribute(s) for each dataset to be used?
— What should be the evaluation metric for each type of fairness on graphs?
— How to split the dataset for training, validation and test?

* Consequences
— Different settings for different research works
— Hardly fair comparison among debiasing methods

e Call: the community should work together toward
— A consensus on the experimental settings
— A benchmark for fair comparison of different methods

I




Fairness vs. Other Social Aspects et

* Overview: trustworthy graph mining
Trustworthy Graph Mining

|
S

Accountability

Robustness ) Fairness Well-being

* Motivation: tensions among the social aspects

* Fairness vs. privacy

— Is fairness related to privacy preservation on graphs?
— Will preserving privacy help ensuring fairness, or vice versa?

[1] Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., & Pei, J.. Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv.
E [2] Dai, E., Zhao, T., Zhu, H., Xu, J., Guo, Z., Liu, H., ... & Wang, S.. A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness,

and Explainability. arXiv.




Fairness vs. Explainability

* Research questions

I

— Are the existing debiasing methods transparent?
— If not, can we open the black box of debiasing methods on graphs?

 Example: loan approval

A&

5\ graph mining
8 ah algorithm

- —8/
)

P A
4 : male 4 & : truth = approved
dh i o

gg; female 8% truth = not approved

Approved Not Approved

abaaEp™™

(1) Low credit history
8 |(2) Decision independent to gender

®) 8 8 Explanation:
ah (1) High historical default rate

\/ v (2) Decision independent to gender

Fair and transparent result

* Fair: equal true positive rate

* Transparent: explanation on the usage of sensitive
information

[1] Dong, Y., Wang, S., Wang, Y., Derr, T., & Li, J. (2022). On Structural Explanation of Bias in Graph Neural Networks. KDD 2022.
E [2] Dong, Y., Wang, S., Ma, J., Liu, N., & Li, J. (2023). Interpreting Unfairness in Graph Neural Networks via Training Node Attribution. AAAI 2023.




Fairness vs. Robustness

* Research questions

— Will existing adversarial attack strategies affect the fairness of mining model?
— Are the existing debiasing methods robust against random noise and adversary?

 Example: loan approval

graph mining
algorithm

-3 male -8 female % malicious user

-- : truth = approved g : truth = not approved

[1] Hussain, H., Cao, M

E Networks. ICDM 2022.

Approved Not Approved

@.z@; :

Fair and robust result
* Fair: equal true positive rate
* Robust: high accuracy

Sikdar, S., Helic, D., Lex, E., Strohmaier, M., & Kern, R. (2022). Adversarial Inter-Group Link Injection Degrades the Fairness of Graph Neural

I



Related Problems of Fairness f{ml

Beyond Fairness on Graphs

l l l

Explainability Accountability Robustness
[ GNNExplainer ] [ N2N ] Nettack
GNN-SVD

. J

Check the details in the longer version of this tutorial at KDD’22
Algorithmic Fairness on Graphs: Methods and Trends
http://jiank2.web.illinois.edu/tutorial/kdd22/algofair on graphs.html



http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html

Takeaways

* Introduction to algorithmic fairness on graphs
— Background, challenges, related problems

* Group fairness on graphs

— Classic graph mining: ranking, clustering

— Advanced graph mining: node embedding, graph neural networks
* Individual fairness on graphs

— Laplacian regularization-based method, ranking-based method

e Other fairness on graphs
— Counterfactual fairness, degree fairness

* Future directions
— Fairness on dynamic graphs
— Benchmark and evaluation metrics for algorithmic fairness on graphs
— Interplay between fairness and other aspects of trustworthiness

I
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Resources A

Datasets: https://github.com/yushundong/Graph-Mining-Fairness-Data
Paper collection: https://github.com/EdisonLeeeee/Awesome-Fair-Graph-Learning

* Surveys
— Dong, Y., Ma, J., Chen, C., & Li, J. (2023). Fairness in Graph Mining: A Survey. TKDE 2023.

— Zhang, W., Weiss, J. C., Zhou, S., & Walsh, T. (2022). Fairness Amidst Non-IID Graph Data: A Literature Review. arXiv preprint
arXiv:2202.07170.

- Zhang, H., Wu, B., Yuan, X., Pan, S,, Tonf, H., & Pei, J. (2022). Trustworthy Graph Neural Networks: Aspects, Methods and
Trends. arXiv preprint arXiv:2205.07424.

— Dai, E,, Zhao, T, Zhu, H., Xu, J., Guo, Z,, Liu, H., ... & Wang, S. (2022). A Comprehensive Survey on Trustworthy Graph Neural
Networks: Privacy, Robustness, Fairness, and Explainability. arXiv preprint arXiv:2204.08570.

Related tutorials
— Algorithmic Fairness on Graphs: Methods and Trends
* http://jiank2.web.illinois.edu/tutorial/kdd22/algofair on graphs.html
— Fairness in Graph Mining: Metrics, Algorithms, and Applications
* https://yushundong.github.io/icdm tutorial 2022.pdf
— Fair Graph Mining
* http://jiank2.web.illinois.edu/tutorial/cikm21/fair graph mining.html

— Fairness in Networks
* https://algofairness.github.io/kdd-2021-network-fairness-tutorial/



https://github.com/yushundong/Graph-Mining-Fairness-Data
https://github.com/EdisonLeeeee/Awesome-Fair-Graph-Learning
http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html
https://yushundong.github.io/icdm_tutorial_2022.pdf
http://jiank2.web.illinois.edu/tutorial/cikm21/fair_graph_mining.html
https://algofairness.github.io/kdd-2021-network-fairness-tutorial/
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