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Networks and Graphs are Everywhere

2This Talk: Graphs = Networks

Hospital Networks 

US Power Grid

Biological Networks 

Collaboration Networks Traffic Network

Brain Networks 



Graph Mining is Widely-Applied

3

Biology

Social science Finance

Cognitive science
[1] Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G.. Network Analysis in the Social Sciences. Science 2009.
[2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H.. Hidden: Hierarchical Dense Subgraph Detection with
Application to Financial Fraud Detection. SDM 2017.
[3] Wang, S., He, L., Cao, B., Lu, C. T., Yu, P. S., & Ragin, A. B.. Structural Deep Brain Network Mining. KDD 2017.
[4] Ding, M., Zhou, C., Chen, Q., Yang, H., & Tang, J.. Cognitive Graph for Multi-Hop Reading Comprehension at Scale. ACL 2019.



Graph Mining: Pipeline
• Graph mining pipeline

• Example: Graduate college admission
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Network Mining: The Who & What Questions

• Who are in the same online community?
• Who is the key to bridge two academic areas? 
• Who is the master criminal mind?
• Who started a misinformation campaign?
• Which items shall we recommend to a user?
• Which gene is most relevant to a given disease?
• Which webpage is most important?
• Which tweet is likely to go viral?
• Which transaction looks suspicious?
• …
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Network Mining: The Why & How Questions

• How to ensure the mining is fair?

• Why are two seemingly different users in the same community?
• Why is a particular tweet more likely to go viral than another?
• Why does the algorithm ‘think’ a transaction looks suspicious?
• How does an influential researcher bridge two areas?
• How do fake reviews skew the recommendation results?
• How do the mining results relate to the input graph topology?
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(college admission)

This Tutorial



Algorithmic Fairness in Machine Learning

• Motivation: Mitigate unintentional bias caused by 
machine learning (ML) algorithms
• Examples of discrimination
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Algorithmic Fairness: Definition
• Definition of ‘fairness’: Lack of favoritism from one side 

or another
• Types of fairness

– Group fairness
• Statistical parity
• Equal opportunity
• And many more…

– Individual fairness
– Counterfactual fairness
– Rawlsian fairness
– And many more…
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Group Fairness: Statistical Parity
• Definition: Equal acceptance rate

Pr! #𝑦 = 𝑐 = Pr" #𝑦 = 𝑐
– !𝑦: Model prediction
– Pr!: Probability of protected group     Pr": Probability of unprotected group
– Also known as demographic parity

• Example: Graduate college admission

• Remark: Easy to fail if we
– Select qualified candidates for one group
– Randomly select candidates for another group
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A classifier for 
college admission

Admitted Not Admitted



Group Fairness: Equal Opportunity
• Definition: Equal true positive rate

Pr! #𝑦 = 𝑐|𝑦 = 𝑐 = Pr" #𝑦 = 𝑐|𝑦 = 𝑐
– Pr!: Probability of protected group     Pr": Probability of unprotected group

• Example: Graduate college admission

• Equalized Odds: Equal opportunity holds for all class labels
Pr! #𝑦 = 𝑐|𝑦 = 𝑐 = Pr" #𝑦 = 𝑐|𝑦 = 𝑐 , ∀𝑐
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A classifier for 
college admission

Admitted Not Admitted
Truth = admitted

Truth = not admitted



Individual Fairness
• Definition: Similar individuals should have similar outcomes

𝑑# 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝐿𝑑$ 𝑥, 𝑦
– 𝑀: A mapping from input to output
– 𝑑#: Distance metric for output
– 𝑑$: Distance metric for input
– 𝐿: A constant scalar

• Example

• Remarks
– Finer granularity than group fairness
– Hard to find proper distance metrics in practice
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Counterfactual Fairness
• Definition: Same outcomes for ‘different versions’ of the same 

candidate
Pr !𝑦%&%! = 𝑐|𝑠 = 𝑠#, 𝑥 = 𝐱 = Pr !𝑦%&%" = 𝑐|𝑠 = 𝑠$, 𝑥 = 𝐱

– Pr !𝑦%&%! = 𝑐|𝑠 = 𝑠#, 𝑥 = 𝐱 : version 1 of 𝐱 with sensitive demographic 𝑠#
– Pr !𝑦%&%" = 𝑐|𝑠 = 𝑠$, 𝑥 = 𝐱 : version 2 of 𝐱 with sensitive demographic 𝑠$

• Example: Causal graph of graduate college admission
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affect admission decision
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Rawlsian Difference Principle
• Origin: Distributive justice

“Inequalities are permissible when they maximize […] the 
long-term expectations of the least fortunate group.”

-- John Rawls, 1971
• Definition: Impossible to make anyone better off without 

making at least one other person worse off
• Formulation in machine learning: Max-min problem

– Min: The worst-off group with smallest welfare/utility
– Max: Maximization of the corresponding utility
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[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.



Key Challenge #1: Theoretical Challenge

• Traditional ML assumption: Data samples are often IID
• Non-IID graph data: Nodes are inter-connected
• Challenge: Implication of non-IID nature on 

– Measuring bias 
– Mitigating unfairness

• Example
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Traditional machine learning Graph mining

• Individuals are 
independent

• One cannot 
affect others

• Individuals are 
connected

• One can affect 
others through 
their connection(s)



Key Challenge #2: Algorithmic Challenge
• Dilemma: Model utility vs. fairness
• Example: Graduate college admission with equal opportunity
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Accurate but not fair Fair but not accurate

Truth = admitted Truth = not admitted



Related Prob. #1: Explainable Graph Mining

• Motivation: Why does the mining model make a particular 
prediction?

• Goal: Explain model prediction to non-expert end users
• Example

• Related work: GNNExplainer, PGM-Explainer, SubgraphX
• Relationship to fairness: Explainability helps interpret whether a 

model uses biased information for prediction to end users
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[1] Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J.. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurIPS
2019.
[2] Vu, M. N., & Thai, M. T.. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. NeurIPS 2020.
[3] Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S.. On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.



Related Prob. #2: Graph Mining Auditing
• Motivation: How do mining results relate to graph topology?
• Goal: Find influential elements w.r.t. the graph mining results
• Example

• Related work: AURORA, N2N, NEAR
• Relationship to fairness: Auditing helps determine to what extent a 

sensitive attribute influences the graph mining results
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ranking clustering recommendation

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
[2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
[3] Wang, Y., Yao, Y., Tong, H., Xu, F., & Lu, J.. Auditing Network Embedding: An Edge Influence based Approach. TKDE 2021.
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[1] Zügner, D., Akbarnejad, A., & Günnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.
[2] Zügner, D., & Günnemann, S.. Adversarial Attacks on Graph Neural Networks via Meta Learning. ICLR 2019.
[3] Zhou, Q., Li, L., Cao, N., Ying, L., & Tong, H.. ADMIRING: Adversarial Multi-Network Mining. ICDM 2019.

Related Prob. #3: Adversarial Attacks on Graph Mining

• Motivation: Why do mining results sensitive to malicious 
manipulations?
• Goal: Fool the mining model by a few manipulations on the 

input graph
• Example

• Related work: Nettack, Mettack, Admiring
• Relationship to fairness: Malicious users can 

– Manipulate the private sensitive information of other users
– Attack the model to make a fair mining model biased



• Motivation: Why can we infer private information by data analysis?
• Goal: Prevent the data or mining model from leaking private information
• Example

• Related work: Tλ, dK-graph, VFGNN
• Relationship to fairness: Preserving privacy on sensitive information may 

help ensure fairness
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[1] Ding, X., Zhang, X., Bao, Z., & Jin, H.. Privacy-Preserving Triangle Counting in Large Graphs. CIKM 2018.
[2] Wang, Y., & Wu, X.. Preserving Differential Privacy in Degree-Correlation based Graph Generation. TDP 2013.
[3] Zhou, J., Chen, C., Zheng, L., Wu, H., Wu, J., Zheng, X., ... & Wang, L.. Vertically Federated Graph Neural Network for Privacy-
Preserving Node Classification. arXiv 2020.

• AOL releases anonymized 
search logs of 650k users

• People find out the identity 
of one searcher using her 
search logs in a few days

Related Prob. #4: Privacy-Preserving Graph Mining



Roadmap
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Part III: Other Fairness Definitions on Graphs  

Part II: Individual Fairness on Graphs  

Part I: Group Fairness on Graphs  

Part IV: Future Research Directions 

Introduction
● (male): 50%    ● (female): 50%



Overview of Part I
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Group Fairness on Graphs

Fairness on Graph 
Ranking

Fairness on Graph 
Clustering

Fairness on Graph 
Embedding

• Fairness-aware 
PageRank

• Fairness-aware 
spectral clustering

• Adversarial learning-
based method

• Random walk-based 
method

• Bayesian method



Preliminary: PageRank
• Assumption

– Important webpage → linked by many others
• Formulation

– Iteratively solve the following linear system
𝐫 = 𝑐𝐀!𝐫 + 1 − 𝑐 𝐞

– 𝐀: transition matrix  𝐫: PageRank vector
𝑐: damping factor     𝐞: teleportation vector

• Closed-form solution
𝐫 = 1 − 𝑐 𝐈 − 𝑐𝐀# "𝟏𝐞

• Many variants exist, including
– Personalized PageRank (PPR)
– Random Walk with Restart (RWR)
– And many more…
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[1] Page, L., Brin, S., Motwani, R., & Winograd, T.. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab 1999.
[2] Haveliwala, T. H.. Topic-sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. TKDE 2003.
[3] Tong, H., Faloutsos, C., & Pan, J. Y.. Fast Random Walk with Restart and Its Applications. ICDM 2006.



Fairness Measures for PageRank
• 𝝓-fair PageRank

– Given: A graph 𝐺
– Definition: A PageRank vector is 𝜙-fair if 𝜙 fraction of total 

PageRank mass is allocated to the protected group
– Variants and generalizations

• Statistical Parity: 𝜙 = fraction of protected group
• Affirmative Action: 𝜙 = a desired ratio (e.g., 20%)

• Targeted 𝝓-fair PageRank
– Given: (1) A graph 𝐺 and (2) a subset of nodes 𝒮
– Definition: A PageRank vector is targeted 𝜙-fair if 𝜙 fraction of 

PageRank mass w.r.t. the subset 𝒮 is allocated to the protected 
group in subset 𝒮
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[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.



Prob. Defn.: Fairness-Aware PageRank
• Given

– A graph with transition matrix 𝐀
– Partitions of nodes

• Red nodes (ℛ): protected group
• Blue nodes (ℬ): unprotected group

• Find: A fair PageRank vector "𝐫 that is 
– 𝜙-fair
– Close to the original PageRank vector 𝐫
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Fairness-aware PageRank
• Recap: PageRank

– Closed-form Solution
𝐫 = 1 − 𝑐 𝐈 − 𝑐𝐀- "𝟏𝐞

• Parameters in PageRank
– Damping factor 𝑐: Avoid sinks in the random walk (i.e., nodes 

without outgoing links)
– Teleportation vector 𝐞: Control the starting node where a 

random walker restarts
• Question: Can we let the walker restart at a protected node or a node 

near many protected nodes?
– Transition matrix 𝐀: Control the next step where the walker goes 

to
• Question: Can we let the walker go to the protected nodes more 

frequently?

25

Solution #1: Fairness-sensitive PageRank



Solution #1: Fairness-sensitive PageRank

• Intuition
– Find a teleportation vector 𝐞 to make PageRank vector 𝜙-fair
– Keep transition matrix 𝐀 and 𝐐- = 1 − 𝑐 𝐈 − 𝑐𝐀- "𝟏 fixed

• Observation: Mass of PageRank 𝐫 w.r.t. red nodes ℛ
𝐫 ℛ = 𝐐2[ℛ, : ]𝐞

– 𝐐- ℛ, : : Rows of 𝐐- w.r.t. nodes in set ℛ
• (Convex) optimization problem

min
"

𝐐!𝐞 − 𝐫 #

s. t. 𝐞 𝑖 ∈ 0, 1 , ∀𝑖
𝐞 $= 1
𝐐'[: , ℛ]𝐞 $= 𝜙 𝐫 $

– Can be solved by any convex optimization solvers
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The fair PageRank 𝐐#𝐞 is as close as 
possible to the original PageRank 𝐫

The teleportation vector 𝐞 is a 
probability distribution

The fair PageRank 𝐐#𝐞
needs to be 𝜙-fair



Example: Fairness-sensitive PageRank
• Define 𝜙 = 1/3 and the protected node is the red node

• Original PageRank

• Fairness-sensitive PageRank
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Fairness-aware PageRank
• Recap: PageRank

– Closed-form Solution
𝐫 = 1 − 𝑐 𝐈 − 𝑐𝐀- "𝟏𝐞

• Parameters in PageRank
– Damping factor 𝑐: Avoiding sinks in the random walk (i.e., 

nodes without outgoing links)
– Teleportation vector 𝐞: Controlling the starting node where a 

random walker restarts
• Question: Can we let the walker restart at a protected node or a node 

near many protected nodes?
– Transition matrix 𝐀: Controlling the next step where the walker 

goes to
• Question: Can we let the walker go to protected node more frequently?

28

Solution #2: Locally fair PageRank



Solution #2: Locally Fair PageRank
• Intuition: Adjust the transition matrix A to obtain a fair 

random walk
• Neighborhood locally fair PageRank

– Key idea: Jump with probability 𝜙 to red nodes and (1-
𝜙) to blue nodes

– Example
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Solution #2: Locally Fair PageRank
• Residual locally fair PageRank

– Key idea: Jump with 
• Equal probability to 1-hop neighbors
• A residual probability 𝛿 to the other red nodes 

– Example

• Residual allocation policies: Neighborhood allocation, uniform 
allocation, proportional allocation, optimized allocation
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Fairness-sensitive PageRank: Experiment
• Observation: The teleportation vector allocates more weight to the 

red nodes, especially nodes at the periphery of the network
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Fairness-sensitive PageRankPageRank

𝜙 = 0.5

Protected group

Unprotected group



Locally Fair PageRank: Experiment
• Observation: PageRank weight is shifted to the boundary 

nodes 
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𝜙 = 0.5

Neighborhood Locally Fair PageRankPageRank Protected group

Unprotected group



Overview of Part I
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Group Fairness on Graphs

Fairness on Graph 
Ranking

Fairness on Graph 
Clustering

Fairness on Graph 
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• Fairness-aware 
PageRank

• Fairness-aware 
spectral clustering

• Adversarial learning-
based method

• Random walk-based 
method

• Bayesian method



Preliminary: Spectral Clustering (SC)
• Goal: Find 𝑘 clusters such that 

• Optimization problem

• Solution: Rank-𝑘 eigen-decomposition
– 𝐔 = eigenvectors with 𝑘 smallest eigenvalues

• Example
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min
𝐔

Tr 𝐔-𝐋𝐔
s. t. 𝐔-𝐔 = 𝐈

where 𝐋 is Laplacian matrix of 𝐀, 𝐔 is a matrix with 𝑘 orthonormal column vectors

maximize intra-connectivity 

minimize inter-connectivity 
Ratio cut

Highly unfair: The 
clustering results 
are correlated with 
gender

All female individuals 
are grouped together

All male individuals are 
grouped together

[1] Ng, A. Y., Jordan, M. I., & Weiss, Y.. On Spectral Clustering: Analysis and an Algorithm. NeurIPS 2002.
[2] Shi, J., & Malik, J.. Normalized Cuts and Image Segmentation. TPAMI 2000.



Fair Spectral Clustering: Fairness Measure
• Intuition: Fairness as balance among clusters

• Given: A node set 𝑉 with
– ℎ demographic groups: 𝑉 = 𝑉# ∪ 𝑉$…∪ 𝑉(
– 𝑘 clusters: 𝑉 = 𝐶# ∪ 𝐶$…∪ 𝐶)

• Define
balance 𝐶$ = min

%&%!∈[)]

𝑉% ∩ 𝐶$
𝑉%+ ∩ 𝐶$

∈ 0, 1 , ∀𝑙 ∈ [1,2, … , 𝑘]

• Intuition: higher balance → each demographic group is presented with similar 
fractions as in the whole dataset for every cluster→ fairer

• Example
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𝑉": female group

𝑉!: male group

𝐶@ 𝐶A
balance 𝐶!

= min
𝑉! ∩ 𝐶!
|𝑉" ∩ 𝐶!|

,
|𝑉" ∩ 𝐶!|
𝑉! ∩ 𝐶!

= min ,

= 1

balance 𝐶"

= min
𝑉! ∩ 𝐶"
|𝑉" ∩ 𝐶"|

,
|𝑉" ∩ 𝐶"|
𝑉" ∩ 𝐶"

= min ,

= 1

𝑉"

𝑉!
[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.



Fair Spectral Clustering: Solution
• Fairness as linear constraint

– Given
• The spectral embedding 𝐔 of 𝑛 nodes in 𝑙 clusters (𝐶$, … , 𝐶%)
• ℎ demographic groups (𝑉$, … , 𝑉&)

– Define
• 𝐟 & 𝑖 = 1 if 𝑖 ∈ 𝑉& and 0 otherwise

• 𝐅 = a matrix with 𝐟 & − '#
(

𝟏( s ∈ 1,… , ℎ − 1 as column vectors

– Observation: 𝐅#𝐔 = 𝟎 ⇔ balanced clusters (i.e., fair clusters)

• Example
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𝑉": female group

𝑉!: male group

𝐟 " 𝐟 !

𝐅 =

Fair fraction



Fair Spectral Clustering: Solution
• Optimization problem

• Solution
– Observation: 𝐅'𝐔 = 𝟎 → 𝐔 is in the null space of 𝐅'

– Define 𝐙 = orthonormal basis of null space of 𝐅'

– Rewrite 𝐔 = 𝐙𝐘

– Solution: Rank-𝑘 eigen-decomposition on 𝐙'𝐋𝐙
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min
𝐔

Tr 𝐘-𝐙-𝐋𝐙𝐘
s. t. 𝐘-𝐘 = 𝐈

min
𝐔

Tr 𝐔-𝐋𝐔
s. t. 𝐔-𝐔 = 𝐈, 𝐅-𝐔 = 𝟎 How to solve?



Correctness of Fair Spectral Clustering
• Given

– A random graph with nodes 𝑉 by a variant of the Stochastic Block Model 
(SBM)

– Edge probability between two nodes 𝑖 and 𝑗

P 𝑖, 𝑗 =

𝑎, 𝑖 and 𝑗 in same cluster and in same group
𝑏, 𝑖 and 𝑗 not in same cluster but in same group
𝑐, 𝑖 and 𝑗 in same cluster but not in same group
𝑑, 𝑖 and 𝑗 not in same cluster and not in same group

for some 𝑎 > 𝑏 > 𝑐 > 𝑑
– A fair ground-truth clustering 𝑉 = 𝐶# ∪ 𝐶$
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• Theorem: Fair SC recovers the ground-truth 
clustering 𝐶$ ∪ 𝐶# with high probability

• Example
– Standard SC is likely to return 𝑉# ∪ 𝑉$



Fair Spectral Clustering: Experiment
• Observation: Fairer (higher balance score) with similar ratio cut 

values for the proposed method (Algorithm 1 in the figure)
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Overview of Part I
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Preliminary: Graph Embedding
• Motivation: Learn low-dimensional node representations 

that preserve structural/attributive information
• Applications

– Node classification
– Link prediction
– Node visualization

• Example
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Visualization of Node Embedding

Node clustering

Link prediction

[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. DeepWalk: Online Learning of Social Representations. KDD 2014.
[2] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q.. LINE: Large-scale Information Network Embedding. WWW 2015.
[3] Tang, J., Liu, J., Zhang, M., & Mei, Q.. Visualizing Large-scale and High-dimensional Data. WWW 2016.



Preliminary: Setup of Graph Embeddings
• Two key components: Edge-wise scoring function + loss function
• Edge-wise scoring function

– Suppose 𝑒 = 𝑢, 𝑣 ; 𝐳* is embedding of 𝑢; 
– Dot product: 𝑠 𝑒 = 𝑠 𝐳*, 𝐫, 𝐳+ = 𝐳*'𝐳+
– TransE: 𝑠 𝑒 = 𝑠 𝐳*, 𝐫, 𝐳+ = − 𝐳* + 𝐫 − 𝐳+ $

$

• Edge-wise loss function
– Suppose 𝑒," is 𝑖-th negative sample for edge 𝑒
– Max margin loss

𝐿-./- 𝑠 𝑒 , 𝑠 𝑒#" , … , 𝑠 𝑒0" =b
,&#

0

max 1 − 𝑠 𝑒 + 𝑠 𝑒," , 0

– Cross entropy loss

𝐿-./- 𝑠 𝑒 , 𝑠 𝑒#" , … , 𝑠 𝑒0" = − log 𝜎 𝑠 𝑒 −b
,&#

0

log 1 − 𝜎 𝑠 𝑒,"
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Compositional Fairness in Graph Embeddings

• Why fairness for embeddings?
– Not just one classification task that considers fairness (e.g., ranking, clustering)

• Why compositional fairness?
– Compositional fairness: accommodation to a combination of sensitive attributes
– Often many possible sensitive attributes for a downstream task
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classification clusteringranking

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

• Gender: male vs. female

• Race*: orange vs. green

* We use imaginary race groups to 
avoid potential offenses



Representational Invariance as Fairness

• Intuition: Independence between the learned embedding 
𝐳 and a sensitive attribute 𝑎

𝐳g ⊥ 𝑎g , ∀ node 𝑢
where 𝑎g is the sensitive value of node 𝑢
• Formulation: Mutual information minimization

𝐼 𝐳g , 𝑎g = 0, ∀ node 𝑢
– Analogous to statistical parity in classification task
– Key idea: Fail to predict 𝑎U using 𝐳U
– Solution: Adversarial learning

44



Compositional Fairness: Framework

45

Compositional 
Filter

Discriminators

• Overview: The proposed compositional fairness framework

• Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (Dk)



Key Component #1: Compositional Filter

(Also called compositional encoder, i.e., C-ENC)
• Goal: Filter sensitive information from the embeddings

– The ‘filtered’ embedding should be invariant to those attributes

• Formulation

C−ENC 𝑢, 𝑆 =
1
𝑆
?
!∈#

𝑓! ENC 𝑢

– Compositional filter: A collection of filters
– Filter: Trainable function 𝑓V (neural networks, e.g., MLP)
– Input: Node ID 𝑢 and the set of sensitive attributes 𝑆 (e.g., 

gender, age)
– Compositionality: Summation over all sensitive attributes
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Compositional Fairness: Framework
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Compositional 
Filter

Discriminators

• Overview: The proposed compositional fairness framework

• Key components: (1) Compositional filter (C-ENC) and (2) discriminators (Dk)



Key Component #2: Discriminators
• Goal: Predict the sensitive attribute from the ‘filtered’ 

embeddings
• Formulation
D! C−ENC 𝑢, 𝑆 , 𝑎! = Pr 𝑎$ = 𝑎! C − ENC 𝑢, 𝑆
– DV: Discriminator for 𝑘-th sensitive attribute
– Input: Node 𝑢’s ‘filtered’ embedding and attribute value
– Pr 𝑎U = 𝑎V C − ENC 𝑢, 𝑆 : Likelihood that node 𝑢 has that 

attribute value
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Compositional Fairness: Loss Function
• Edge-wise objective function

𝐿 𝑒 = 𝐿WXYW 𝑠 𝑒 , 𝑠 𝑒#" , … , 𝑠 𝑒Z"

+𝜆V
V∈[

V
\:∈𝒜:

log DV C−ENC 𝑢, 𝑆 , 𝑎V

– 𝐿-./-: Edge-wise loss function for graph embedding

– log D) C−ENC 𝑢, 𝑆 , 𝑎) : The discriminator fails to predict sensitive 
attribute correctly with the ‘filtered’ embeddings
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Compositional Fairness: Experiment
• Task: Classifying the sensitive attribute from the learned node 

embeddings
– Baseline methods: Each adversary is a 2-layer MLP

• Baseline (no adversary): Vanilla model train without fairness consideration
• Independent adversary: independent adversarial model for each attribute
• Compositional adversary: The proposed full compositional model 

• Observations
– Accuracy of compositional adversary is no better than majority classifier
– Performance of compositional adversary is at the same level with 

independent adversaries
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Compositional Fairness: Experiment
• Task: Recommendation 
• Observation: There is only a small increase in root mean 

squared error (RMSE) compared with the vanilla model
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Compositional Fairness: Experiment
• Task: Trade-off between fairness and recommendation quality

– Fairness: Measured by regularization hyperparameter 𝜆
– Recommendation quality: Measured by AUC and RMSE

• Observation: The proposed method achieves a good balance 
between fairness and recommendation performance
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Overview of Part I
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Embedding

• Fairness-aware 
PageRank

• Fairness-aware 
spectral clustering

• Adversarial learning-
based method

• Random walk-based 
method

• Bayesian method



Preliminary: node2vec
• Goal: Learn node embeddings that are predictive of 

nodes in its neighborhood
• Key idea: Skip-gram model with biased random walk

– The biased random walk learns
• Structural equivalence in BFS fashion
• Homophily in DFS fashion

– Example

54

• Return parameter 𝑝: How fast the 
walk explores the neighborhood of 
the starting node

• In-out parameter 𝑞: How fast the 
walk leaves the neighborhood of the 
starting node



Fairness in Graph Embedding
• Statistical parity

– Given: (1) A sensitive attribute 𝒮; (2) multiple demographic 
groups 𝒢𝒮 partitioned by 𝒮

– Extension to multiple groups: Variance among the acceptance 
rates of each group in 𝒢𝒮
bias_` 𝒢𝒮 = Var acceptance−rate 𝐺𝒮 𝐺𝒮 ∈ 𝒢𝒮
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[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. FairWalk: Towards Fair Graph Embedding. IJCAI 2019.

• Example: A network of four      
and two    

– acceptance−rate( )=3/4
– acceptance−rate( )=1/2
– bias_` = Var a

b ,
#
$ = #

cb



Fairness in Graph Embedding
• Equality of representation - network level

– Intuition: Among all recommendations in the network, measure 
the bias as the variance of the number of recommendations 
from each demographic group

– Formulation
biasde;<=>? 𝒢𝒮 = Var 𝑁 𝐺𝒮 𝐺𝒮 ∈ 𝒢𝒮

• Example: In a social network of     and 
– Total recommendations

– 𝑁 = 4 and 𝑁 = 2
– biasde;<=>? = Var 4,2 = 1
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Fairness in Graph Embedding
• Equality of representation - user Level

– Z-share: Among recommendations 𝜌(𝑢) given to a specific user 𝑢, measure the 
fraction of users having sensitive value 𝑧

z−share 𝑢 =
𝜌, 𝑢
𝜌 𝑢

– Intuition: Measure the bias as the difference between a fair fraction "
|𝒵𝒮|

and the 
average z-share over all users 𝑈

bias/0#$%& 𝑧 =
1

|𝒵𝒮| −
∑2∈3 z−share(𝑢)

|𝑈|
• Example: For any user 𝑢 in the social network of ten     and ten

– 𝒵𝒮 = , = 2 and fair fraction "
|𝒵𝒮|

= "
!

– The recommendations w.r.t. any user 𝑢 are constant:  
– Let 𝑧 = , we know 𝜌, 𝑢 = 1 and 𝜌 𝑢 = 3
– z−share 𝑢 = 4' 2

4 2
= "

5

– bias/0#$%& = "
!
− ∑( "/5

!8
= "

9
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Fairwalk: Solution
• Key idea: Modify the random walk procedure in node2vec
• Steps of Fairwalk

– Partition neighbors into demographic groups
– Assign equal probability to each demographic group
– Select a demographic group to walk to
– Randomly select a node within the chosen demographic group
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Fairwalk: Example
• Example: Ratio of each demographic group

– Original network vs. regular random walk vs. fair random walk
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Fairwalk vs. Existing Works
• Fairwalk vs. node2vec

– Node2vec: skip-gram model + walk sequences by original 
random walk

– Fairwalk: skip-gram model + walk sequences by fair random 
walk

• Fairwalk vs. fairness-aware PageRank
– Fairness-aware PageRank: The minority group should have a 

certain proportion of PageRank probability mass
– Fairwalk: All demographic group have the same random walk 

transition probability mass
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Fairwalk: Statistical Parity
• Observations

– Fairwalk achieves a more balanced acceptance rates among groups
– Fairwalk increases the fraction of cross-group recommendations
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Fairwalk: Network-level Equality of Representation

• Observation: Fairwalk increases the number of recommendation 
for underrepresented groups
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Fairwalk: User-level Equality of Representation

• Observations
– Fairwalk decreases the user-level bias 
– Z-share distribution of Fairwalk leans towards the fair fraction 
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Z-share DistributionBias for User-level Equality of Representation



Overview of Part I
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Preliminary: Conditional Network Embedding

• Goal: Find an embedding 𝐙 using maximum likelihood 
estimation of P(𝐺|𝐙) with the empirical graph 𝐺
• Key idea: Bayes rule

P 𝐺 𝐙 =
P 𝐙 𝐺 ⋅ P(𝐺)

P(𝐙)
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ℝ

ℝ
Likelihood:P(𝐙|𝐺)

𝐙𝐺

Prior: 𝑃 𝐺

𝑃 𝒁 =V
q

𝑃 𝒁 𝐺 𝑃 𝐺

Marginalization: 𝑃 𝒁

[1] Kang, B., Lijffijt, J., & De Bie, T.. Conditional Network Embeddings. ICLR 2019.



Preliminary: Conditional Network Embedding

• Key idea: Modeling degree distribution into prior 
– Given

• (1) A degree distribution: 𝑝)*+
• (2) A random graph: 𝐺 = 𝑉, 𝐸 with node set 𝑉, edge set 𝐸
• (3) Degree constraint: degree distribution of 𝐺 is 𝑝)*+ 𝐺 = 𝑝)*+

– Find: A maximum entropy distribution 𝑝 𝐺 that satisfies degree constraint
– Result: P 𝐺 = ∏ *,+ ∈3 𝑝*+∏(*,+)∉3 1 − 𝑝*+
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Prior P 𝐺Degree distribution  𝑝)*+An instance of 𝐺

Maximize entropy of 𝐺

s.t. degree constraint
For every 𝑢

∑! 𝑝"! = degree of 𝑢 in 𝑝#$%

Node 𝑢

Probability that node 𝑢
and node 𝑣 are connected



DeBayes: Fairness Measures
• Tasks

– Task #1: Fair network embedding

– Task #2: Link prediction
– Goal: Debias the embeddings in order to debias the link prediction

• Fairness measures
– Low-level fairness: Fairness for network embedding
– High-level fairness: Fairness for link prediction
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[1] Buyl, M., & De Bie, T.. DeBayes: A Bayesian Method for Debiasing Network Embeddings. ICML 2020.

Downstream task



DeBayes: Fairness Measures
• Fairness for network embedding: Representation bias (RB)

RB =<
%∈7

1
𝑉%
AUC P 𝐴 𝑣 |𝐳+ |∀𝑣 ∈ 𝑉%

– 𝑠: A sensitive attribute value
– 𝐴 𝑣 : Node 𝑣’s sensitive attribute value
– 𝑉%: The set of nodes with sensitive value 𝑠, i.e., 𝑣 𝐴 𝑣 = 𝑠
– P 𝐴 𝑣 |𝐳+ : Probability of predicting sensitive attribute value 𝐴 𝑣 of node 
𝑣 using its embedding 𝐳+

– #
8,

: Weighted average, weighted by size of demographic group

– AUC ⋯ : One-vs.-rest AUC

• Intuition
– Fair embedding should not infer the ground-truth sensitive attribute value  

→ low P 𝐴 𝑣 |𝐳+
– low P 𝐴 𝑣 |𝐳+ → low true positive rate → low AUC
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[1] Buyl, M., & De Bie, T.. DeBayes: A Bayesian Method for Debiasing Network Embeddings. ICML 2020.



DeBayes: Fairness Measures
• Fairness for link prediction

– Goal: Main concern should be fairness in downstream task
– Statistical Parity: Equal acceptance rate
– Equal Opportunity: Equal true positive rate
– Accuracy Rate Parity: Balance in top k% edge predictions

• Example: Accuracy rate parity
– 10 edge predictions in total
– Top 2 (i.e., top 20%) predictions in consideration
– Highly biased: Both are red-red links
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[1] Buyl, M., & De Bie, T.. DeBayes: A Bayesian Method for Debiasing Network Embeddings. ICML 2020.



DeBayes: Key Idea
• Two types of prior

– The biased prior: a prior with information about sensitive 
attribute

– The oblivious prior: a prior without information about sensitive 
attribute
• E.g., The prior used in conditional network embedding

• Key idea: Debias embedding by modeling bias in prior
– Learn embeddings with the biased prior
– Evaluate embeddings with the oblivious prior

• Question: How to find the biased prior?
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DeBayes: The Biased Prior
• Given

– (1) Random graph: 𝐺 (e.g., an instance as shown below)  
– (2) Sensitive attribute: 𝐴 = {blue, red} 

– (3) Fairness-aware distribution: Blue/red degree distributions 𝑝)*+
(./0*), 𝑝)*+

(2*))

– (4) Fairness-aware degree constraint: 𝑝)*+
(./0*) 𝐺 = 𝑝)*+

(./0*) and 𝑝)*+
(2*)) 𝐺 = 𝑝)*+

(2*))

• Find: Maximum entropy distribution 𝑝 𝐺|𝐴 that satisfies the fairness-aware degree 
constraint
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Node 𝑢
Maximize entropy of 𝐺 given 𝐴
s.t. fairness−aware degree constraints
• Blue degree distribution 𝑝:;<

(>?@;)

for node 𝑢 in 𝐺
• Red degree distribution 𝑝:;<

(B;:)

for node 𝑢 in 𝐺
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2
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0
1
2

0
1
1
1
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1
1

𝑝:;<
(>?@;) 𝑝:;<

(B;:)An instance of 𝐺



DeBayes vs. Conditional Network Embedding (CNE)
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CNE Embeddings DeBayes Embeddings

Observation: Embeddings are less biased toward the node color



DeBayes: Workflow
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Degree
constraint

Biased degree
constraint

ℝ

ℝ = argmax
𝐙

𝑃 𝐺 𝒁, 𝐴

= argmax
𝒁

𝑃 𝐙 𝐺, 𝐴 𝑃 𝐺 𝐴
𝑃 𝐙 𝐴

= argmax
𝐙

𝑃 𝐙 𝐺 𝑃 𝐺 𝐴
𝑃 𝐙 𝐴

𝐙.-;

𝑃 𝐺 𝐴𝑃 𝐺 𝒁, 𝐴

Training

𝐺

Evaluation
(link prediction)

𝑃 𝐺 𝒁<=>

=
𝑃 𝒁<=> 𝐺 𝑃(𝐺)

𝑃(𝒁<=>)



Fairness for Network Embedding: Experiment

• Observation: DeBayes achieves the best trade-off between link 
prediction AUC and representation bias (RB)
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Fairness for Link Prediction: Experiment
• Observation: DeBayes achieves the best trade-off between link prediction AUC 

and statistical parity (DP), equal opportunity (EO) and accuracy rate parity (ARP) 
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Roadmap
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Part III: Other Fairness Definitions on Graphs  

Part II: Individual Fairness on Graphs  

Part I: Group Fairness on Graphs  

Part IV: Future Research Directions 

Introduction
● (male): 50%    ● (female): 50%



Overview of Part II
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Individual Fairness on Graphs

Optimization-based 
Approach

Ranking-based 
Approach

• Laplacian 
regularization-based 
individual fairness

• Ranking-based 
individual fairness



Preliminary: Graph Mining Pipeline
• Graph mining: An optimization perspective

– Input:
• Input graph 𝐀
• Model parameters 𝜃

– Output: Mining results 𝐘
• Examples: Ranking vectors, class probabilities, embedding
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Minimize task-specific 
loss function 𝑙(𝐀, 𝐘, 𝜃)



Preliminary: Classic Graph Mining Algorithms
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Mining Task Task Specific Loss Function 𝒍() Mining Result 𝑌∗ Parameters

PageRank min
𝐫
𝑐𝐫( 𝐈 − 𝐀 𝐫 + (1 − 𝑐) 𝐫 − 𝐞 )

* PageRank vector 𝐫 damping factor 𝑐
teleportation vector 𝐞

Spectral 
Clustering

min
𝐔
Tr 𝐔(𝐋𝐔

s. t. 𝐔(𝐔 = 𝐈
eigenvectors 𝐔 # clusters 𝑘

LINE (1st) min
𝐗

T
-./

0

T
1./

0

𝐀 𝑖, 𝑗 log𝑔 −𝐗 𝑗, : 𝐗 𝑖, : (

+𝑏𝔼1!~3"[log 𝑔 −𝐗 𝑗(, : 𝐗 𝑖, : ( ]

embedding matrix 𝐗 embedding dimension 𝑑
# negative samples 𝑏

Examples of Classic Graph Mining Algorithm



InFoRM: Individual Fairness on GRaph Mining

• Research questions
Q1. Measures: How to quantitatively measure individual bias?
Q2. Algorithms: How to enforce individual fairness?
Q3. Cost: What is the cost of individual fairness?
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[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFoRM: Individual Fairness on Graph Mining. KDD 2020.



Problem Definition: InFoRM Measures
• Questions

– How to determine if the mining 
results are fair?

– How to quantitatively measure the 
overall bias?

• Input
– Node-node similarity matrix 𝐒

• Non-negative, symmetric
– Graph mining algorithm 𝑙(𝐀, 𝐘, 𝜃)

• Loss function 𝑙 "
• Additional set of parameters 𝜃

– Fairness tolerance parameter 𝜖
• Output

– Binary decision on whether the 
mining result is fair

– Individual bias measure Bias(𝐘, 𝐒)
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Measuring Individual Bias: Formulation
• Principle: Similar nodes → similar mining results

• Mathematical formulation
𝐘 𝑖, : − 𝐘 𝑗, : ?

$ ≤
𝜖

𝐒 𝑖, 𝑗
∀𝑖, 𝑗 = 1,… , 𝑛

– Intuition: If 𝐒 𝑖, 𝑗 is high, C
𝐒 E,G

is small → push 𝐘 𝑖, : and 𝐘 𝑗, : to be more similar

– Observation: Inequality should hold for every pairs of nodes 𝑖 and 𝑗
• Problem: Too restrictive to be fulfilled

• Relaxed criteria: ∑,&#@ ∑A&#@ 𝐘 𝑖, : − 𝐘 𝑗, : ?
$𝐒 𝑖, 𝑗 = 2Tr(𝐘B𝐋𝐒𝐘) ≤ 𝑚𝜖 = 𝛿
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Measuring Individual Bias: Solution
• InFoRM (Individual Fairness on GRaph Mining)

– Given: (1) A graph mining result 𝐘; (2) a symmetric similarity 
matrix 𝐒; and (3) a constant fairness tolerance 𝛿

– 𝐘 is individually fair w.r.t. 𝐒 if it satisfies

Tr 𝐘|𝐋𝐒𝐘 ≤
𝛿
2

– Overall individual bias is Bias 𝐘, 𝐒 = Tr 𝐘|𝐋𝐒𝐘
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[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.



Lipschitz Property of Individual Fairness

• Connection to Lipschitz Property
– 𝑫𝟏, 𝑫𝟐 -Lipschitz property: A function 𝑓 is 𝐷#, 𝐷$ -Lipschitz if 

it satisfies
𝐷# 𝑓 𝑖 , 𝑓 𝑗 ≤ 𝐿𝐷$ 𝑖, 𝑗 , ∀(𝑥, 𝑦)

• 𝐿 is Lipschitz constant
– InFoRM naturally satisfies 𝐷#, 𝐷$ -Lipschitz property as long as

• 𝑓 𝑖 = 𝐘[𝑖, : ]
• 𝐷# 𝑓 𝑖 , 𝑓 𝑗 = 𝐘 𝑖, : − 𝐘[𝑗, : ] ?

$ , 𝐷$ 𝑖, 𝑗 = #
𝐒 ,,A

– Lipschitz constant of InFoRM is 𝜖
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[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.



Problem Definition: InFoRM Algorithms
• Question: How to mitigate the 

bias of the mining results?
• Input

– Node-node similarity matrix 𝐒
– Graph mining algorithm 𝑙(𝐀, 𝐘, 𝜃)
– Individual bias measure Bias(𝐘, 𝐒)

• Defined in the previous problem 
(InFoRM Measures)

• Output: Revised mining result 𝐘∗
that minimizes

– Task-specific loss function 𝑙(𝐀, 𝐘, 𝜃)
– Individual bias measure Bias(𝐘, 𝐒)
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Mitigating Individual Bias: How To
• Graph mining pipeline

• Observation: Bias can be introduced/amplified in each 
component

– Solution: Bias can be mitigated in each part

• Algorithmic frameworks
– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results
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output

input graph 𝐀 mining model w/ parameter 𝜃 mining results 𝐘
minimize 
𝑙(𝐀, 𝐘, 𝜃)

input

mutually complementary



Debiasing the Input Graph
• Goal: Bias mitigation via a pre-processing strategy
• Intuition: Learn a new topology of graph J𝐀 such that

– u𝐀 is as similar to the original graph 𝐀 as possible 
– Bias of mining results on u𝐀 is minimized

• Optimization problem
min
𝐘

𝐽 = J𝐀 − 𝐀 i
j
+ 𝛼Tr 𝐘k𝐋𝐒𝐘

• Challenge: Bi-level optimization
– Solution: Exploration of KKT conditions
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bias measure

consistency in graph topology

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
[2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI 2015.

s. t. 𝐘 = argmin𝐘 𝑙(J𝐀, 𝐘, 𝜃)



Debiasing the Input Graph
• Considering the KKT conditions,

min
𝐘

𝐽 = J𝐀 − 𝐀 i
j
+ 𝛼Tr 𝐘k𝐋𝐒𝐘

• Proposed method
(1) Fix u𝐀 (u𝐀 = 𝐀 at initialization), find 𝐘 using current u𝐀
(2) Fix 𝐘, update u𝐀 by gradient descent
(3) Iterate between (1) and (2)

• Problem: How to compute the gradient w.r.t. J𝐀?
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s. t. 𝜕𝐘𝑙 J𝐀, 𝐘, 𝜃 = 0



Debiasing the Input Graph
• Computing gradient w.r.t. J𝐀

𝜕𝐽
𝜕3𝐀

= 2 3𝐀 − 𝐀 + 𝛼 Tr 28𝐘𝐋𝐒
𝜕 8𝐘

𝜕3𝐀[𝑖, 𝑗]

d𝐽
d3𝐀

=

𝜕𝐽
𝜕3𝐀

+ (
𝜕𝐽
𝜕3𝐀
)′ − diag

𝜕𝐽
𝜕3𝐀

, if undirected

𝜕𝐽
𝜕3𝐀

, if directed

– !𝐘 satisfies 𝜕𝐘𝑙 %𝐀, 𝐘, 𝜃 = 0

– 𝐇 = Tr 2!𝐘𝐋𝐒
&'𝐘

&~𝐀[),+] is a matrix with 𝐇 𝑖, 𝑗 = Tr 2!𝐘𝐋𝐒
&'𝐘

&~𝐀[),+]

• Question: How to efficiently calculate 𝐇?
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Key component to calculate 



Instantiation #1: PageRank
• Goal: Efficiently calculate 𝐇 for PageRank
•Mining results 𝐘: 𝐫 = 1 − 𝑐 𝐐𝐞
• Partial derivatives 𝐇: 𝐇 = 2𝑐𝐐2𝐋𝐒𝐫𝐫′
• Remarks: 𝐐 = 𝐈 − 𝑐𝐀 45

• Time Complexity
– Straightforward: 𝑂(𝑛l)
– Ours: 𝑂(𝑚m +𝑚j + 𝑛)

• 𝑚𝐀: number of edges in 𝐀
• 𝑚𝐒: number of edges in 𝐒
• 𝑛: number of nodes
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×

=

2𝑐𝐐+𝐋𝐒𝐫 𝐫′

𝐇



Instantiation #2: Spectral Clustering
• Goal: Efficiently calculate 𝐇 for spectral clustering

• Mining results 𝐘: 𝐔 = eigenvectors with 𝑘 smallest eigenvalues

• Partial derivatives 𝐇: 𝐇 = 2∑,&#) diag 𝐌,𝐋𝐒𝐮,𝐮,′ 𝟏@×F −𝐌,𝐋𝐒𝐮,𝐮,′
• Remarks

– 𝜆E , 𝐮E = 𝑖-th smallest eigenpair
– 𝐌E = 𝜆E𝐈 − 𝐋𝐀 I

• Time complexity
– Straightforward: 𝑂 𝑘! 𝑚 + 𝑛 + 𝑘5𝑛 + 𝑘𝑛5

– Ours: 𝑂 𝑘 + 𝑟 𝑚" + 𝑛 + 𝑘 𝑚! + 𝑛 + 𝑘 + 𝑟 !𝑛
• 𝑘: number of smallest eigenvalues
• 𝑟: number of largest eigenvalues
• 𝑚$: number of edges in 𝐀
• 𝑚8: number of edges in 𝐒
• 𝑛: number of nodes
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×

=

𝐌E𝐋𝐒𝐮E 𝐮E′

𝐌E𝐋𝐒𝐮E𝐮E′

Vectorize diag 𝐌9𝐋𝐒𝐮9𝐮9′
and stack it 𝑛 times

Low-rank



Instantiation #3: LINE (1st)
• Goal: Efficiently calculate 𝐇 for LINE (1st)

• Mining results 𝐘: 𝐘[𝑖, : ]𝐘 𝑗, : B = log '(
G𝐀 ,,A !G𝐀[A,,])

<;<<
=/?!<;

=/?<<
− log 𝑏

– 𝑑E = outdegree of node 𝑖, 𝑇 = ∑EJ"K 𝑑E
5/L and 𝑏 = number of negative samples

• Partial derivatives 𝐇: 𝐇 = 2𝑓 x𝐀 + x𝐀′ ∘ 𝐋𝐒 − 2diag 𝐁𝐋𝐒 𝟏@×@
• Remarks

– 𝑓(⋅) calculates Hadamard inverse, ∘ calculates Hadamard product

– 𝐁 = 5
L
𝑓 𝐝M/L 𝐝N"/L + + 𝐝𝟏"×K + 𝑓 𝐝5/L 𝐝"/L + + 𝐝𝟏"×K with 𝐝P 𝑖 = 𝑑EP

• Time complexity
– Straightforward: 𝑂(𝑛5)
– Ours: 𝑂(𝑚" +𝑚! + 𝑛)

• 𝑚$: number of edges in 𝐀
• 𝑚8: number of edges in 𝐒
• 𝑛: number of nodes
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Vectorize diag 𝐁𝐋𝐒 and 
stack it 𝑛 times

Element-wise in-place calculation

Stack 𝐝 𝑛 times



Debiasing the Mining Model
• Goal: Bias mitigation during model optimization
• Intuition: Optimizing a regularized objective such that 

– Task-specific loss function is minimized
– Bias of mining results as regularization penalty is minimized

• Optimization problem
min
𝐘

𝐽 = 𝑙(𝐀, 𝐘, 𝜃) + 𝛼Tr 𝐘(𝐋𝐒𝐘
• Solution

– General: Solve by (stochastic) gradient descent ST
S𝐘
= SV(𝐀,𝐘,X)

S𝐘
+

2𝛼𝐋𝐒𝐘
– Task-specific: Solve by specific algorithm designed for the graph 

mining problem
• Advantage

– Linear time complexity incurred in computing the gradient
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bias measure

task-specific loss function



Debiasing the Mining Model: Instantiations

• PageRank
– Objective function: min

𝐫
𝑐𝐫* 𝐈 − 𝐀 𝐫 + 1 − 𝑐 𝐫 − 𝐞 +

, + 𝛼𝐫*𝐋𝐒𝐫

– Solution: 𝐫∗ = 𝑐 𝐀 − /
0
𝐋𝐒 𝐫∗ + (1 − 𝑐)𝐞

• PageRank on new transition matrix 𝐀 − @
A
𝐋𝐒

• If 𝐋𝐒 = 𝐈 − 𝐒, then 𝐫∗ = A
$C@

𝐀 + @
$C@

𝐒 𝐫∗ + $DA
$C@

𝐞

• Spectral clustering
– Objective function: min

𝐔
Tr 𝐔*𝐋𝐀𝐔 + 𝛼Tr 𝐔*𝐋𝐒𝐔 = Tr(𝐔*𝐋𝐀3𝛂𝐒𝐔)

– Solution: 𝐔∗ = eigenvectors of 𝐋𝐀3𝛂𝐒 with 𝑘 smallest eigenvalues
• Spectral clustering on an augmented graph 𝐀 + 𝛂𝐒

• LINE (1st)
– Objective function

max
𝐱!,𝐱"

log 𝑔(𝐱7𝐱8*) + 𝑏𝔼7#∈:$ log 𝑔 −𝐱7#𝐱8
* − 𝛼 𝐱8 − 𝐱7 +

,
𝐒[𝑖, 𝑗]

– Solution: Stochastic gradient descent 
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∀𝑖, 𝑗 = 1, … , 𝑛



Debiasing the Mining Results
• Goal: Bias mitigation via a post-processing strategy
• Intuition: No access to either the input graph or the graph 

mining model
• Optimization problem

min
𝐘

𝐽 = 𝐘 − N𝐘 K
L + 𝛼Tr 𝐘(𝐋𝐒𝐘

– C𝐘 is the vanilla mining results
• Solution: (𝐈 + 𝛼𝐒)𝐘∗ = N𝐘

– Convex loss function as long as 𝛼 ≥ 0 → global optima by ST
S𝐘
= 0

– Solve by conjugate gradient (or other linear system solvers)
• Advantages

– No knowledge needed on the input graph
– Model-agnostic
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bias measure, convex

consistency of mining results, convex



Problem Definition: InFoRM Cost
• Question: How to quantitatively characterize the cost of 

individual fairness?  
• Input

– Vanilla mining result v𝐘
– Debiased mining result 𝐘∗

• Learned by the previous problem (InFoRM Algorithms)

• Output: An upper bound of 𝐘̀ − 𝐘∗ i

• Debiasing methods
– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results
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depend on specific graph topology/mining model

main focus



Cost of Debiasing the Mining Results
• Given

– A graph with 𝑛 nodes and adjacency matrix 𝐀
– A node-node similarity matrix 𝐒
– Vanilla mining results }𝐘
– Debiased mining results 𝐘∗ = 𝐈 + 𝛼𝐒 "#}𝐘

• If 𝐒 − 𝐀 � = ∆, we have
v𝐘 − 𝐘∗ � ≤ 2𝛼 𝑛 ∆ + 𝑟𝑎𝑛𝑘 𝐀 𝜎��� 𝐀 v𝐘 �

• Observation: The cost of debiasing the mining results depends on
– The number of nodes 𝑛 (i.e., size of the input graph)
– The difference ∆ between 𝐀 and 𝐒
– The rank of 𝐀
– The largest singular value of 𝐀
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could be small due to low-rank structures in real-world graphs 

could be small if 𝐀 is normalized



InFoRM: Experiment
• Graph mining task: PageRank
• Observation: Effective in mitigating bias while preserving the 

performance of the vanilla algorithm with relatively small changes 
to the original mining results

– Similar observations for spectral clustering and LINE (1st)
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Overview of Part II
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Individual Fairness on Graphs

Optimization-based 
Approach

Ranking-based 
Approach

• Laplacian 
regularization-based 
individual fairness

• Ranking-based 
individual fairness



Individual Fairness on GNNs
• Goal: Debias a graph neural network (GNN) to ensure its 

output is individually fair
• Key challenge: Distance calibration
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[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.

Input Space Output Space

𝑥

𝑦

𝑀(𝑥)

𝑀(𝑦)

𝑀 ⋅

𝑀 ⋅

𝑑! 𝑥, 𝑦 𝑑" 𝑀 𝑥 ,𝑀 𝑦



Key Challenge: Distance calibration
• Existing formulation: Lipschitz condition (used in InFoRM)

𝑑# 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝐿𝑑$ 𝑥, 𝑦

• Limitation: Direct distance comparison fails to calibrate the differences between 
different individuals

• Example

• Question: Can we achieve fairness with natural calibration across individuals?
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distance metric 
in input space

distance metric 
in output space



REDRESS: Ranking basEd InDividual FaiRnESS

• Ranking-based individual fairness
– Given: (1) The pairwise node similarity matrix 𝐒K of the input graph 𝐺; (2) 

the pairwise similarity matrix 𝐒L𝐘 of the GNN output �𝐘
– �𝐘 is individually fair if, for each node 𝑖, it satisfies that 

ranking list derived by 𝐒K 𝑖, ∶ = ranking list derived by 𝐒L𝐘[𝑖, ∶]

• Example

• Advantage: Naturally calibrate across individuals
– No direct distance comparison
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REDRESS: Framework
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• GNN backbone model
– Learn node representations

• Utility maximization
– Minimize the downstream 

task-specific loss

• Individual fairness 
optimization

– Enforce ranking-based 
individual fairness



REDRESS: GNN Backbone Model
• Goal: Learn node representations by a GNN
• Formulation: 𝑙-th GNN Layer

ℎ�
��m = 𝜎 AGG ℎ$

(�): 𝑢 ∈ 𝒩 𝑣 ∪ {𝑣}

– ℎ�
� : Embedding of node 𝑣 at 𝑙-th layer

– AGG(⋅): Information aggregation function (e.g., mean, weighted 
sum)

– 𝜎(⋅): Activation function (e.g., ReLU)
– 𝒩 𝑣 : Neighborhood set of node 𝑣

• Advantage: No restriction on the GNN architecture
– REDRESS works on any GNN model
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REDRESS: Framework
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• GNN backbone model
– Learn node representations

• Utility maximization
– Minimize the downstream 

task-specific loss

• Individual fairness 
optimization

– Enforce ranking-based 
individual fairness



REDRESS: Utility Maximization
• Goal: Minimize the downstream task-specific loss 

function
• Choice of loss function: Cross-entropy loss

𝐿������� = − ?
�,� ∈𝒯

𝐘 𝑖, 𝑗 log o𝐘 𝑖, 𝑗

– 𝐘 𝑖, 𝑗 : 𝑖-th row and 𝑗-th column in ground truth 𝐘
– �𝐘 𝑖, 𝑗 : 𝑖-th row and 𝑗-th column in GNN predictions �𝐘
– 𝒯: A set of tuples

• Node classification: 𝒯 is a set of (node, class) tuples
• Link prediction: 𝒯 is a set of (node, node) tuples
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REDRESS: Framework
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• GNN backbone model
– Learn node representations

• Utility maximization
– Minimize the downstream 

task-specific loss

• Individual fairness 
optimization

– Enforce ranking-based 
individual fairness



REDRESS: Individual Fairness Optimization
• Given: (1) Pairwise node similarity matrix 𝐒q of input graph 𝐺 and 

(2) pairwise similarity matrix 𝐒 �𝐘 of GNN output �𝐘
• Goal: For each node 𝑖, ensure that the ranking lists derived from 
𝐒q 𝑖, : and 𝐒 �𝐘 𝑖, : are similar
• Example: Ranking lists of node 𝑢#

• Problem: Ranking is a non-differentiable operation
→ loss on the ranking lists will be non-differentiable
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Ranking list derived by 𝐒F𝐘[1, ∶] Ranking list derived by 𝐒E[1, ∶]
Unfair! 

Rankings of 𝑢H and 
𝑢I are different in 
two ranking lists



REDRESS: Individual Fairness Optimization

• Solution
– Consider the relative ranking orders of every node pair in 𝐒q

and 𝐒 �𝐘
– Ensure that every node pair’s relative orders are consistent 

across 𝐒q and 𝐒 �𝐘
• Example: Ranking lists of node 𝑢m
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Ranking list derived by 𝐒F𝐘[1, ∶] Ranking list derived by 𝐒E[1, ∶]



REDRESS: Individual Fairness Optimization
• How to calculate relative ranking order

– Key idea: Relative ranking order of 𝑢 and 𝑣 = Probability that 𝑢
ranks higher than 𝑣
• Inspired by learning-to-rank

– Input space: Pairwise node similarity matrix 𝐒q of graph 𝐺

𝑃*+ 𝑖 = #
$
1 + 𝑇*+ 𝑖 𝑇*+ 𝑖 = �

1
0
−1

– Output space: Pairwise similarity matrix 𝐒 �𝐘 of GNN output �𝐘
�𝑃*+ 𝑖 =

1
1 + 𝑒"N 𝐒J𝐘 ,,* "𝐒J𝐘 ,,+

where 𝛼 is a constant scalar
– Fairness loss for a node pair

𝐿*+ 𝑖 = −𝑃*+ 𝑖 log �𝑃*+ 𝑖 − 1 − 𝑃*+ 𝑖 log 1 − �𝑃*+ 𝑖
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𝑢 ranks higher than 𝑣

𝑣 ranks higher than 𝑢
𝑢 and 𝑣 has the same rank



REDRESS: Individual Fairness Optimization
• Solution: Focus on top-𝑘 similar nodes for each node 𝑖 in 𝐒L𝐘

– Individual fairness: Similar outcomes for similar individuals
– Define 𝑧@R = similarity metric for two top-𝑘 ranking lists (e.g., NDCG@𝑘)

𝐿STUBV;WW =�
E

�
2

�
X

𝐿2X 𝑖 Δ𝑧@R 2,X

where Δ𝑧@R 2,X = absolute value changes in 𝑧@R if nodes 𝑢 and 𝑣 are swapped

• Intuition of 𝚫𝒛@𝒌 𝒖,𝒗
– High 𝛥𝑧@R 2,X → 𝑢 and 𝑣 are dissimilar → more penalty if ranked wrong

• Example
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𝑂(𝑛𝑘!) time complexity



REDRESS: Total Loss Functions
• Utility loss

𝐿¢£¤¥¤£¦ = − V
§,¨ ∈𝒯

𝐘 𝑖, 𝑗 log �𝐘 𝑖, 𝑗

• Fairness loss
𝐿U� 𝑖 = −𝑃U� 𝑖 log �𝑃U� 𝑖 − 1 − 𝑃U� 𝑖 log 1 − �𝑃U� 𝑖

𝐿ª�¤«¬W­­ =V
§

V
U

V
�

𝐿U� 𝑖 Δ𝑧@V U,�

• Total loss
𝐿 = 𝐿¢£¤¥¤£¦ + 𝛾𝐿ª�¤«¬W­­

where 𝛾 is the regularization hyperparameter
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REDRESS: Experiment
• Observations for node classification

– Comparable performance on model utility compared with the 
best ones

– Best performance on the ranking-based individual fairness

• Similar observations for link prediction

113



Roadmap
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Part III: Other Fairness Definitions on Graphs  

Part II: Individual Fairness on Graphs  

Part I: Group Fairness on Graphs  

Part IV: Future Research Directions 

Introduction
● (male): 50%    ● (female): 50%



Overview of Part III
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Other Fairness Definitions on Graphs

Counterfactual 
Fairness

Degree-related 
Fairness

Rawlsian Difference 
Principle

• Fairness on graph 
embedding

• Fairness on graph 
neural networks

• Fairness on graph 
covering



Recap: Counterfactual Fairness
• Definition: Same outcomes for ‘different versions’ of the same 

candidate
Pr �𝑦%&%! = 𝑐|𝑠 = 𝑠#, 𝑥 = 𝐱 = Pr �𝑦%&%" = 𝑐|𝑠 = 𝑠$, 𝑥 = 𝐱

– Pr �𝑦%&%! = 𝑐|𝑠 = 𝑠#, 𝑥 = 𝐱 : version 1 of 𝐱 with sensitive demographic 𝑠#
– Pr �𝑦%&%" = 𝑐|𝑠 = 𝑠$, 𝑥 = 𝐱 : version 2 of 𝐱 with sensitive demographic 𝑠$

• Example: Causal graph of graduate college admission
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gender

race

GPA

GRE
score

last year 
grade

admission Unfair: gender and race can 
affect admission decision



Preliminary: Stability
• Definition: Perturbations on the input data should not 

affect the output too much
• Mathematical formulation: Lipschitz condition

𝑑m 𝑀 𝑥 ,𝑀 "𝑥 ≤ 𝐿𝑑j 𝑥, "𝑥
– 𝑀: A mapping from input to output
– 𝑑#: Distance metric for output
– 𝑑$: Distance metric for input
– 𝐿: Lipschitz constant
– �𝑥: Perturbed version of original input data 𝑥
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Counterfactual Fairness vs. Stability

• Given
– A graph with binary adjacency matrix 𝐀
– A node 𝑢 with feature vector 𝐱*

• Information vector of node 𝑢: 𝐛K = 𝐱K; 𝐀 𝑢, ∶
– Perturbed version �𝑢 of node 𝑢 with information vector �𝐛*

• Perturbation(s) on 𝐱K or 𝐀 𝑢, ∶
– Counterfactual version �𝑢% of node 𝑢

• Modification on the value of sensitive attribute 𝑠 in 𝐱K
– An encoder function ENC(⋅) that learns the embedding ENC(𝑢) of node 𝑢

• Counterfactual fairness
ENC 𝑢 = ENC �𝑢¯

• Stability
ENC 𝑢 − ENC �𝑢 ° ≤ 𝐿 �𝐛U − 𝐛U °

• Question: Can we learn node embedding that is both 
counterfactually fair and stable?
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[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.



NIFTY: Contrastive Learning-based Framework
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maximize similarity among embeddings of 𝑢, 7𝑢, 7𝑢%

𝑢

7𝑢
7𝑢%

Perturb the edge and 
attribute of node 𝑢

Change the value of 
a sensitive attribute



NIFTY Layer and NIFTY Encoder
• Given

– 𝐡*
) : Representation of node 𝑢 at 𝑘-th layer

– 𝒩 𝑢 : Neighborhood of node 𝑢
– 𝐖S

()): Self-attention weight matrix at 𝑘-th layer

– x𝐖S
) = 𝐖L

(M)

𝐖L
M

N

: Lipschitz-normalization on 𝐖S
())

• 𝐖Y
R

Z
: Spectral norm of 𝐖Y

(R)

– 𝐖@
()): Weight matrix associated with the neighbors of node 𝑢

• The 𝑘-th NIFTY layer learns node representation by 

𝐡U
V = 𝜎 u𝐖\

V"# 𝐡U
V"# +𝐖²

V"# V
�∈𝒩 U

𝐡�
V"#

• NIFTY Encoder ENC(⋅)= a stack of 𝐾 NIFTY layers
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NIFTY: Similarity Loss
• Goal: Maximize similarity among embeddings of 𝑢, �𝑢, �𝑢%

• Augmented graph: Either (1) edge/attribute perturbed graph or (2) counterfactual 
graph with modification on the value of sensitive attribute

• Formulation

𝐿% 𝑢, �𝑢UV/ =
𝐷 FC 𝐳* , SG 𝐳*

UV/ + 𝐷 FC 𝐳*
UV/ , SG 𝐳*

2
– 𝐷(⋅,⋅): Cosine distance
– 7𝑢T@<: Counterpart of node 𝑢 in the augmented graph
– 𝐳2, 𝐳2

T@<: Representation of nodes 𝑢 and 7𝑢T@< learned by NIFTY encoder
– FC(⋅): A fully-connected layer to transform and align embeddings
– SG(⋅): Stop-grad operator, stop calculating the gradient with respect to its input

• Intuition: Minimize 𝐿%
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FC 𝐳* and 𝐳*
UV/ are similar

FC 𝐳*
UV/ and 𝐳* are similar



NIFTY: Total Loss
• Total loss

𝐿 = 1 − 𝜆 𝐿¦ + 𝜆 𝔼$ 𝐿§ 𝑢, "𝑢 + 𝔼$ 𝐿§ 𝑢, "𝑢¨
– 𝜆: Regularization hyperparameter
– 𝐿º: Task-specific loss 

• E.g., cross-entropy loss for node classification
– 𝔼U 𝐿¯ 𝑢, �𝑢 : Similarity loss of original graph and the 

edge/attribute perturbed graph
– 𝔼U 𝐿¯ 𝑢, �𝑢­ : Similarity loss of original graph and the 

counterfactual graph

• Intuition: Jointly minimize
– The task-specific loss
– Distance among embeddings of 𝑢, �𝑢 and �𝑢¯, for each node 𝑢
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NIFTY Stability
• Given

– A 𝐾-layer NIFTY encoder ENC ⋅
• Self-attention weight matrix at 𝑘-th layer M𝐖;

<

– A binary-valued sensitive attribute 𝑠
– A node 𝑢 with information vector 𝐛\
– Perturbed version M𝑢 of node 𝑢 with information vector N𝐛\

• NIFTY learns stable node embedding

ENC 𝑢 − ENC T𝑢 O ≤V
PQR

S

3𝐖T
P

O
𝐛U − Y𝐛U O

• Remarks
– Lipschitz constant = ∏]^$

_ P𝐖`
]

a
– Normalized P𝐖`

] → small Lipschitz constant → stable ENC 𝑢
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NIFTY Counterfactual Fairness
• Given

– A 𝐾-layer NIFTY encoder ENC ⋅
• Self-attention weight matrix at 𝑘-th layer ~𝐖Y

R

– A binary-valued sensitive attribute 𝑠
– A node 𝑢 with its counterfactual version �𝑢% by flipping the value of 𝑠

• NIFTY is counterfactually fair with the unfairness upper bounded as 
follows

ENC 𝑢 − ENC �𝑢¯ ° ≤�
V»#

¼

u𝐖\
V

°

• Remarks
– Upper bounded counterfactual unfairness (i.e., ENC 𝑢 − ENC �𝑢% W)

– Normalized x𝐖S
) → counterfactually fair ENC 𝑢

124



NIFTY: Experiment
• Observation: NIFTY improves both fairness and stability
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Overview of Part III
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Other Fairness Definitions on Graphs

Counterfactual 
Fairness

Degree-related 
Fairness

Rawlsian Difference 
Principle

• Fairness on graph 
embedding

• Fairness on graph 
neural networks

• Fairness on graph 
covering



Preliminary: Graph Convolutional Network (GCN)

• Key Idea: Learn representations by aggregating information from the neighbors

• GCN: A stack of graph convolution layers
– The 𝑙-th graph convolution layer with 𝜎 activation

𝐡,
X!# = 𝜎 <

A∈𝒩;∪ ,

𝑎,A𝐖 X 𝐡A
X

• Example
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[1] Kipf, T. N., & Welling, M. (2016). Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017.

Node representations of nodes 𝑖 and 𝑗

Weight parameters

Edge weight between nodes 𝑖 and 𝑗Neighborhood aggregation



GCN Analysis: Error Rate Distribution
• Observation: Low-degree nodes get higher error rate
• Question: Why should we concern about low-degree nodes?
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[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-Related Biases in Graph
Convolutional Networks. CIKM 2020.



Degree Distribution of Real-World Graphs

• Observation: Degree distribution is long-tailed
– Low-degree nodes are the majority in the graph
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Why GCN Fails
• Key steps in GCN training

– Learn node representations by message passing 
– Train the model parameters by backpropagation

• Question #1: Does GCN fail because of the message 
passing schema?

– Hypothesis #1: High-degree nodes have higher influence to 
affect the training of GCN on other nodes

• Question #2: Does GCN fail during the backpropagation?
– Only information of labeled nodes can be backpropagated to its 

neighbors
– Hypothesis #2: High-degree nodes are more likely to connect 

with labeled nodes
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Cause #1: Influence of High-Degree Nodes
• Given

– A set of labeled nodes 𝒱=>?@=@A
– An 𝐿-layer GCN with 𝐖 B as the weight of 𝐿-th layer
– Two nodes 𝑖 and 𝑘 whose degrees are 𝑑8 and 𝑑<

• 𝐱9 and 𝐱O as their corresponding input node features
• 𝐡9

P and 𝐡O
P as the output embeddings learned by GCN

• Influence of node 𝒊 to node 𝒌
𝔼 𝜕𝐡e

f /𝜕𝐱] ∝ 𝑑e𝑑]𝐖 f

• Influence of node 𝒊 on GCN training

𝑆 𝑖 = \
]∈𝒱[\]^[^_

𝔼 𝜕𝐡e
f /𝜕𝐱] ∝ 𝑑e 𝐖 f \

]∈𝒱[\]^[^_

𝑑]

• Remark
– For two nodes 𝑖 and 𝑗, if 𝑑8 > 𝑑7, then 𝑆 𝑖 > 𝑆 𝑗

→ Node with higher degree will have higher influence on GCN training
• Question: How to mitigate the impact of 𝑑e?
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Cause #1: Influence of High-Degree Nodes

• Goal: Visualize the influence score 𝑆 ⋅ for each node
• Observation: High-degree nodes have higher influence 

score
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Cause #2: Ratio of Labeled Neighbors
• Observation: High-degree nodes are more likely to have labeled neighbors

• Question: How to ensure that low-degree nodes receive enough training signals?
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SL-DSGCN: Framework
• Strategy: Pre-training + fine-tuning
• Pre-training

– Mitigate the impact of node degree by degree-specific GCN
– Pre-train (1) an annotator through label propagation and (2) a Bayesian 

neural network (BNN) with true labels for further use in fine-tuning stage
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Degree-Specific GCN
• Degree-specific GCN: Two components

– A stack of degree-specific graph convolution layer for embedding 
learning

– A fully-connected layer for node classification
• Given: The settings of GCN in the 𝑙-th layer and 

– 𝑑e: The degree of node 𝑖
– 𝒩e: The neighborhood of node 𝑖
– 𝐖h`

V : The degree-specific weight w.r.t. degree of node 𝑗

• Degree-specific graph convolution layer

𝐡[
\!R = 𝜎 \

]∈𝒩i∪ [

𝑎[] 𝐖 \ +𝐖aj
\ 𝐡]

\

• Question: How to generate the degree-specific weight?
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Degree-Specific Weight
• Method: Generate degree-specific weight by a recurrent neural 

network (RNN)
– Hypothesis: Existence of the complex relations among nodes with different 

degrees

• Given: (1) A RNN and (2) 𝐖)
X = degree-specific weight of degree 𝑘 at 𝑙-th layer

• We have
𝐖)!#

X = RNN 𝐖)
X
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SL-DSGCN: Framework
• Strategy: Pre-training + fine-tuning
• Fine-tuning

– Provide pseudo training signals to low-degree nodes for self-supervision
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Fine-Tuning with Self-Supervision
• Student network: Degree-specific GCN
• Teacher network: BNN

– Provide additional softly-labeled set for self-supervision in student network
• Softly-labeled set: nodes labeled identically by the annotator and the BNN

– Exponentially decay the learning rate of labeled and softly-labeled nodes by 
uncertainty score 
• Higher uncertainty score → smaller learning rate
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SL-DSGCN: Experiment
• Observations

– Increased label rate implies higher classification accuracy
– Self-supervision provides useful information (i.e., high accuracy when the 

label rate is low)
– SL-DSGCN outperforms all baseline methods
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SL-DSGCN: Experiment
• Observations: Degree-wise classification accuracy

– SL-DSGCN > DSGNN > GCN for all degrees
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Preliminary: Graph Covering
• Definitions

– A monitor: A node selected by the graph covering algorithm
– A covered node: A neighbor of the monitor
– Coverage: The total number of covered nodes

• Given: (1) A graph 𝒢; (2) An integer budget 𝐼
• Find: A subset of 𝐼 nodes in 𝒢 to maximize the coverage
• Example
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[1] Kratochv, J., Proskurowski, A., & Telle, J.. Complexity of Graph Covering Problems. NJC 1998.



Preliminary: Applications of Graph Covering

• Suicide prevention
– The monitors will identify the warning signs of suicide among 

their covered nodes
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[1] Isaac, M., Elias, B., Katz, L. Y., Belik, S. L., Deane, F. P., Enns, M. W., ... & Swampy Cree Suicide Prevention Team. Gatekeeper Training
as a Preventative Intervention for Suicide: A Systematic Review. CJP 2009.



Preliminary: Applications of Graph Covering

• Disaster risk management
– The monitors will watch out their covered nodes in the case of 

natural disasters
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[1] Ab Ahmad, R., Amin, Z. A. M., Abdullah, C. H., & Ngajam, S. Z.. Public Awareness and Education Programme for Landslide
Management and Evaluation Using a Social Research Approach to Determining “Acceptable Risk” and “Tolerable Risk” in Landslide Risk
Areas in Malaysia. WLF4 2017.



Robust Graph Covering
• Key difference: Some monitors may fail

– If a monitor fails, its neighbors are not covered

• Given: (1) A graph 𝒢; (2) Two integer budgets 𝐽 and 𝐼 (𝐽 < 𝐼)
• Find: A subset of 𝐼 nodes in 𝒢 to maximize the worst-case coverage when any 𝐽

nodes fail
• Example
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[1] Tzoumas, V., Gatsis, K., Jadbabaie, A., & Pappas, G. J.. Resilient Monotone Submodular Function Maximization. CDC 2017.

Select as a monitor



Robust Graph Covering: Formulation
• Given

– A graph 𝒢 = 𝒩, ℰ with 𝑛 nodes in total
– A binary vector 𝐱 of length 𝑛, 𝐱 𝑖 = 1 if the 𝑖-th node is selected as monitor

• The candidate binary vector 𝐱 is chosen from a set 𝒳
– A binary vector 𝛏 of length 𝑛, 𝛏 𝑖 = 1 if the 𝑖-th node does not fail

• The candidate binary vector 𝛏 is chosen from a set 𝛯
– A binary vector 𝐲 of length 𝑛, 𝐲𝐱,𝛏 𝑖 = 1 if the 𝑖-th node is covered

• Define: The coverage 𝐹𝒢 𝐱, 𝛏 = 𝟏-𝐲𝐱,𝛏 where 𝟏 with all 1s
• Mathematical formulation

max
𝐱∈𝒳

min
𝛏∈Á

𝐹𝒢 𝐱, 𝛏
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Find the worst-caseMaximize its coverage



Robust Graph Covering: Example
• Monitor: Node in yellow

• Covered nodes: Neighbors of the nodes in both yellow and red

• Coverage: The number of nodes in green
• Goal: Maximize the number of green nodes
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Unfairness in Robust Covering
• Observation: Coverage by racial group varies in the network

– Existing algorithms are biased against the race of an individual

• Question: Can we ensure that different racial groups have similar 
coverages?
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[1] Tzoumas, V., Gatsis, K., Jadbabaie, A., & Pappas, G. J.. Resilient Monotone Submodular Function Maximization. CDC 2017.

Networ
k Size

Percentage Covered by Racial Group

White Black Hisp. Mixed Other

SPY1 95 70 36 - 86 95

SPY2 117 78 - 42 76 67

SPY3 118 88 - 33 95 69

MFP1 165 96 77 69 73 28
MFP2 182 44 85 70 77 72



Fairness in Robust Graph Covering
• Fairness definition

– Rawlsian difference principle to maximize the utility of the worst-off groups

• Example
– Sensitive attribute: Race
– We need to maximize the utilities of Hispanic people in SPY2 and SPY3
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[1] Rahmattalabi, A., Vayanos, P., Fulginiti, A., Rice, E., Wilder, B., Yadav, A., & Tambe, M.. Exploring Algorithmic Fairness in Robust Graph
Covering Problems. NeurIPS 2019.

Netwo
rk

Size
Percentage Covered by Racial Group

White Black Hisp. Mixed Other

SPY1 95 70 36 - 86 95

SPY2 117 78 - 42 76 67

SPY3 118 88 - 33 95 69
MFP1 165 96 77 69 73 28
MFP2 182 44 85 70 77 72



RCFair: Robust Graph Covering with Fairness Constraint

• Given: The settings of robust graph covering and
– A set of sensitive attribute value 𝒞, e.g., 𝒞 = {male, female} for gender
– The demographic groups 𝒩 =∪]∈𝒞𝒩] defined by 𝒞

• Define: The group-specific coverage 𝐹𝒢,º 𝐱, 𝛏 = ∑§∈𝒩C 𝐲𝐱,𝛏 𝑖
• Mathematical formulation

where 𝑊 ∈ 0,1 is a constant

• Intuition of fairness constraint
– At least 𝑊 fraction of nodes from each group should be covered
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s. t. 𝐹𝒢,] 𝐱, 𝛏 ≥ 𝑊 𝒩] ∀𝑐 ∈ 𝒞, ∀𝛏 ∈ 𝛯

max
𝐱∈𝒳

min
𝛏∈a

𝐹𝒢 𝐱, 𝛏 =<
]∈𝒞

𝐹𝒢,] 𝐱, 𝛏



RCFair: Example
• Example

– 15 people with lighter skin, 3 people with darker skin
– 𝑊 = 1/3, at least 1/3 of people in each group should be covered
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RCFair: Hardness
• Formulation

• Challenges
– Discontinuity of 𝐹𝒢 𝐱, 𝛏
– NP hard combinatorial problem

• Question: How to solve the problem?
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s. t. 𝐹𝒢,] 𝐱, 𝛏 ≥ 𝑊 𝒩] ∀𝑐 ∈ 𝒞, ∀𝛏 ∈ 𝛯

max
𝐱∈𝒳

min
𝛏∈a

𝐹𝒢 𝐱, 𝛏 =<
]∈𝒞

𝐹𝒢,] 𝐱, 𝛏



RCFair: Problem Reformulation
• Key idea: Reformulation on the objective function

𝐹𝒢 𝐱, 𝛏 = max
𝐲

V
§∈𝒩

𝐲 𝑖 : 𝐲 𝑖 ≤ V
¨∈ÃD

𝐱 𝑖 𝛏 𝑗 , ∀𝑖 ∈ 𝒩

– 𝛿§: neighborhood of node 𝑖
• Equivalence of reformulation

– 𝐲 𝑖 = 1 if and only if node 𝑖 is covered
– 𝐲 𝑖 = 0 when no neighbor of node 𝑖 is the non-‘fail’ monitor

• Question: How to reformulate the RCFair problem?
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RCFair: Problem Reformulation
• Problem reformulation

– Reformulation on both 𝐹𝒢,º 𝐱, 𝛏 and 𝐹𝒢,] 𝐱, 𝛏

• Challenge: Max-min-max problem
– How to solve?
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s. t. 𝒴 = 𝐲: <
,∈𝒩Q

𝐲 𝑖 ≥ 𝑊 𝒩] , ∀𝑖 ∈ 𝒩]

max
𝐱∈𝒳

min
𝛏∈a

max
𝐲∈𝒴

<
,∈𝒩

𝐲 𝑖 : 𝐲 𝑖 ≤ <
A∈d;

𝐱 𝑖 𝛏 𝑗 , ∀𝑖 ∈ 𝒩



RCFair: K-Adaptability Approximation
• Key steps

– Find 𝐾 candidate solutions that 
• Achieve highest coverage
• Satisfy the fairness constraint
• Without considering node failure

– Select the best solution within the candidates when considering 
node failure

• Question: How to find 𝐾 candidates efficiently?
• Solution: Derive the equivalence to Mixed-Interger Linear 

Programming (MILP)
– Apply Bender’s Decomposition to solve the MILP
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[1] Hanasusanto, G. A., Kuhn, D., & Wiesemann, W.. K-Adaptability in Two-Stage Robust Binary Programming. OPRE 2015.
[2] Rahmattalabi, A., Vayanos, P., & Tambe, M.. A Robust Optimization Approach to Designing Near-Optimal Strategies for Constant-Sum
Monitoring Games. GameSec 2018.



RCFair: Price of Fairness
• Intuition: Incorporating fairness constraint comes at a price

– Lead to suboptimal solution to take care of the fairness

• Question: What is the cost of ensuring fairness?
• Definition: Price of Fairness (PoF)

– OPT(𝒢, 𝐼, 𝐽): Optimal coverage without fairness constraint
– OPTeUfg(𝒢, 𝐼, 𝐽): Optimal coverage with fairness constraint

PoF 𝒢, 𝐼, 𝐽 = 1 −
OPTª�¤«(𝒢, 𝐼, 𝐽)
OPT(𝒢, 𝐼, 𝐽)

• Intuition of PoF
– High PoF → few nodes are covered in fair solution
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RCFair: Price of Fairness in Real Networks

• Given: An arbitrary number 𝜖 > 0
• There exists

– A budget 𝐼
– A network 𝒢 = 𝒩, ℰ with 𝒩 ≥ b

Ä
+ 3

• Such that
PoF 𝒢, 𝐼, 0 ≥ 1 − 𝜖

• Remark: RCFair without node failure can be arbitrarily 
bad in real networks
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RCFair: Price of Fairness in Random Graphs

• Random graph model: Stochastic Block Model (SBM)

• Expected PoF: PoF 𝐼, 𝐽 = 1 − 𝔼𝒢∼_ÆÇ
ÈÉÊEFGH 𝒢,Ë,Ì
ÈÉÊ(𝒢,Ë,Ì)

• Conditions
– Certain assumption on the edge probability in SBM model
– Budget 𝐼 = 𝑂 log 𝒩

• Expected PoF in SBM
PoF 𝐼, 𝐽 = 1 −

𝜂 ∑]∈𝒞 𝒩] + 𝐽∑]∈𝒞\{j}𝑑 𝑐
𝐼 − 𝐽 𝑑 𝒞

− 𝑜 1

– 𝑑 𝑐 is a term related to 𝒩]
– 𝜂 is related to 𝒞 and 𝒩] for each 𝑐 ∈ 𝒞

• Remark: Expected PoF in SBM model changes with the relative size 
of each community determined by the sensitive attribute
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RCFair: Experiment
• Shaded area: Convex hull of the associated algorithm

• Observations
– Utility: The proposed method (K=3) have similar worst-case coverage with state-of-

the-art
– Fairness: The proposed method has the best worst-case coverage of the worst-off 

group
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Roadmap
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Part III: Other Fairness Definitions on Graphs  

Part II: Individual Fairness on Graphs  

Part I: Group Fairness on Graphs  

Part IV: Future Research Directions 

Introduction
● (male): 50%    ● (female): 50%



Fairness on Dynamic Graphs
• Motivation: Networks are dynamically changing over time
• Trivial solution: Re-run the fair graph mining algorithm 

from scratch at each timestamp
• Limitations

– Time-consuming to re-train the mining model
– Fail to capture the dynamic information in ensuring fairness

• Questions
– How to efficiently update the mining results and ensure the 

fairness at each timestamp?
– How to characterize the impact of dynamics over the bias 

measure?
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Fairness on Multi-Networks
• Motivation: Real-world networks are often multi-sourced

• Trivial solution: Flatten the multi-network to a single network and ensure 
fairness on the flattened single network

• Limitations
– May introduce noise due to different distributions of different networks
– Fail to characterize the impact of cross-network links in ensuring fairness

• Question
– How to ensure the fairness of mining results across multiple networks?
– How to understand the implication of ensuring fairness on one network over the bias 

of another network?
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Multi-Resolution Fairness on Graphs
• Motivation: Fairness on the entire graph may not imply the 

fairness on a subgraph
• Example

• Questions
– Can we ensure multi-resolution fairness on graph mining? 

• The mining results are fair across multiple resolution (e.g., graph-level, 
subgraph-level, node-level)?

– How to characterize the relationship between the hierarchical 
structure of the graph and the multi-resolution fairness constraint?

163

Fair clustering in graph level Unfair clustering in subgraph level
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Takeaways
• Background knowledge and related problems
• Group fairness on graphs

– Ranking, clustering, embedding

• Individual fairness on graphs
– Laplacian regularization-based approach, ranking-based 

approach

• Other fairness definitions on graphs
– Counterfactual fairness, degree-related fairness, Rawlsian 

difference principle

• Future research directions
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