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Fair Graph Mining




Networks and Graphs are Everywhere -
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This Talk: Graphs = Networks




Graph Mining is Widely-Applied !

Finance

Social science

Cognitive science

[1] Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G.. Network Analysis in the Social Sciences. Science 2009.
[2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H.. Hidden: Hierarchical Dense Subgraph Detection with

Application to Financial Fraud Detection. SDM 2017.
[3] Wang, S., He, L., Cao, B., Lu, C. T., Yu, P. S., & Ragin, A. B.. Structural Deep Brain Network Mining. KDD 2017. 3
[4] Ding, M., Zhou, C., Chen, Q., Yang, H., & Tang, J.. Cognitive Graph for Multi-Hop Reading Comprehension at Scale. ACL 2019.




Graph Mining: Pipeline E@L

* Graph mining pipeline
input graph mining model mining results
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* Example: Graduate college admission
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Network Mining: The Who & What Questions Z‘IDLIJE

* Who are in the same online community?
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* Who is the key to bridge two academic areas? i ”

* Who is the master criminal mind? flAE 2

* Who started a misinformation campaign? @ ___________
* Which items shall we recommend to a user? ®©®
* Which gene is most relevant to a given disease? CD@

* Which webpage is most important?

* Which tweet is likely to go viral? LK WL

e Which transaction looks suspicious? E al e “ =




Network Mining: The Why & How Questions j‘lucﬂl

* How to ensure the mining is fair?

qualified unqualified
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* Why are two seemingly different users in the same community?

* Why is a particular tweet more likely to go viral than another?

 Why does the algorithm ‘think” a transaction looks suspicious?

* How does an influential researcher bridge two areas?
* How do fake reviews skew the recommendation results?

 How do the mining results relate to the input graph topology?



Algorithmic Fairness in Machine Learning @

* Motivation: Mitigate unintentional bias caused by
machine learning (ML) algorithms

 Examples of discrimination
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can (and can't) tell us about Al bias

A striking image that only hints at a much bigger problem
lames Vincent | Jun 23, 2020, 3:45pm EDT
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Algorithmic Fairness: Definition

* Definition of ‘fairness’: Lack of favoritism from ne side
or another

* Types of fairness

— Group fairness
 Statistical parity

Input Space Output Space

* Equal opportunit M()
q PP y ,/\ i
* And many more... x *
. . . dz(x, y) l : dl(M(x)'M(y))
— Individual fairness i M)
Y e M()

— Counterfactual fairness
— Rawlsian fairness
— And many more...




Group Fairness: Statistical Parity S@L

* Definition: Equal acceptance rate

Pro(=c)=Pr_(y =¢)
— ¥y: Model prediction
— Pr,: Probability of protected group Pr_: Probability of unprotected group
— Also known as demographic parity

 Example: Graduate college admission agmitted  Not Admitted
® o

]
[ J [ J :
I
1
1
A classifier for I
® o college admission :
1
1
1
1
|I |I 1
1
1
1

* Remark: Easy to fail if we
— Select qualified candidates for one group
— Randomly select candidates for another group




Group Fairness: Equal Opportunity S@L

* Definition: Equal true positive rate

Pro@=cly=c)=Pr_(J =cly =c)
— Pr,: Probability of protected group Pr_: Probability of unprotected group

 Example: Graduate college admission
e ©
w ﬂTruth = admitted ® ®
Z@@Truth = not admitted w w
A classifier for
‘ E j college admission

e Equalized Odds: Equal opportunity holds for all class labels
Pro(=cly=c)=Pr_(I =cly=c), Vc

Admitted Not Admitted




Individual Fairness

e Definition: Similar individuals should have similar outcomes

di(M(x), M(y)) < Ldy(x,y)

— M: A mapping from input to output
— dq: Distance metric for output
— d,: Distance metric for input

— L: A constant scalar

° Example Input Space ME Output Space

x ,/ \*:,M(x)
dy (6, y) 1 L dy (M), M(y))

! M(y)
Y @ M(-)

* Remarks
— Finer granularity than group fairness
— Hard to find proper distance metrics in practice

i



Counterfactual Fairness @

e Definition: Same outcomes for ‘different versions’ of the same

candidate
Pr(f/szs1 =cCls =51, x = X) = Pr()?5=52 =cCls =5,,x = x)

- Pr(flszs1 =cC|s =5, x = x): version 1 of X with sensitive demographic s

- Pr()?5=52 =cC|s =85y, x = x): version 2 of X with sensitive demographic s,

* Example: Causal graph of graduate college admission

. . - GeHatsTiactvally fajy: sender
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admission decision
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Rawlsian Difference Principle @

“Inequalities are permissible when they maximize [...] the
long-term expectations of the least fortunate group.”

-- John Rawls, 1971

* Definition: Impossible to make anyone better off without
making at least one other person worse off

* Formulation in machine learning: Max-min problem
— Min: The worst-off group with smallest welfare/utility
— Max: Maximization of the corresponding utility

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.

I




Key Challenge #1: Theoretical Challenge ?@L

* Traditional ML assumption: Data samples are often IID
* Non-IID graph data: Nodes are inter-connected

* Challenge: Implication of non-IID nature on
— Measuring bias

— Mitigating unfairness
* Example

o o * Individuals are o o * Individuals are
'n‘ '“‘ independent connected
[ ]

'ﬂ‘ 'ﬂ\ * One cannot

ﬂ\ affect others

* One can affect
others through
their connection(s)

Traditional machine learning Graph mining




Key Challenge #2: Algorithmic Challenge ?@L

* Dilemma: Model utility vs. fairness

 Example: Graduate college admission with equal opportunity

e o
w ﬂTruth = admitted @{}Tmth = not admitted

Admitted Not Admitted Admitted Not Admitted

Accurate but not fair z Fair but not accurate




Related Prob. #1: Explainable Graph Mining Z‘IDLIJE

* Motivation: Why does the mining model make a particular
prediction?

e Goal: Explain model prediction to non-expert end users
° Example . GNN model training and predictions Explaning GNN'’s predictions

7; = “Basketball” 7; = “Sailing”

GNNEpralner

— ng*_'i»!

* Related work: GNNEpralner PGM-Explainer, SubgraphX

* Relationship to fairness: Explainability helps interpret whether a
model uses biased information for prediction to end users

[1] Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J.. GNNExplainer: Generating Explanations for Graph Neural Networks. NeurlPS
2019.

[2] Vu, M. N., & Thai, M. T.. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. NeurlIPS 2020.
[3] Yuan, H., Yu, H., Wang, J., Li, K., & Ji, S.. On Explainability of Graph Neural Networks via Subgraph Explorations. ICML 2021.




Related Prob. #2: Graph Mining Auditing ?@L

* Motivation: How do mining results relate to graph topology?

* Goal: Find influential elements w.r.t. the graph mining results

 Example
R KOG & m gl
.‘ PY = e\ 00 (& @ - a
&\ @ / PR o | 1& 15
p oo.. . '.II . . /,,@--\\‘ 8 |‘
b 2NN @ﬁ) - @ O & & |16
y X \~\\ ,,”' s l‘
e o '°:.‘.::;: A @ B 1k |1 |16 |16 | 1
ranking clustering recommendation

* Related work: AURORA, N2N, NEAR

* Relationship to fairness: Auditing helps determine to what extent a
sensitive attribute influences the graph mining results

[1] Kang, J., Wang, M., Cao, N., Xia, Y., Fan, W., & Tong, H.. AURORA: Auditing PageRank on Large Graphs. Big Data 2018.
E [2] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.

[3] Wang, Y., Yao, Y., Tong, H., Xu, F., & Lu, J.. Auditing Network Embedding: An Edge Influence based Approach. TKDE 2021.




Related Prob. #3: Adversarial Attacks on Graph Mining |

* Motivation: Why do mining results sensitive to malicious
manipulations?

* Goal: Fool the mining model by a few manipulations on the

input graph - »
* Example &
\Q/s"’:’f’\,
7 G
\\\
N
»(Q\S;\ =
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\_ 5 &

* Related work: Nettack, Mettack, Admiring

* Relationship to fairness: Malicious users can
— Manipulate the private sensitive information of other users
— Attack the model to make a fair mining model biased

[1] Zlgner, D., Akbarnejad, A., & Glinnemann, S.. Adversarial Attacks on Neural Networks for Graph Data. KDD 2018.
E [2] Zlgner, D., & Glinnemann, S.. Adversarial Attacks on Graph Neural Networks via Meta Learning. ICLR 2019.

[3] Zhou, Q,, Li, L., Cao, N., Ying, L., & Tong, H.. ADMIRING: Adversarial Multi-Network Mining. ICDM 2019.




Related Prob. #4: Privacy-Preserving Graph Mining et

* Motivation: Why can we infer private information by data analysis?
* Goal: Prevent the data or mining model from leaking private information

° Example €he New AJork Times TGChnOIogy

WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION @ AOL rEIeaseS anonym|zed
CAMCORDERS CAMERAS CELLPHONES COMPUTERS HANDHELDS HOMEVIDEO MUSIC PERIPHE
search logs of 650k users

A Face Is Exposed for AOL Searcher No. 4417749

MICHAEL BARBARO TOM ZELLER

B * People find out the identity

Buried in a list of 20 million Web search queries collected by AOLand 5 prin

recently released on the Internet is user No. 4417749. The number was [E SINGLE PAGE Of one searc h eru S| N g h er

assigned by the company to protect the searcher’s anonymity, but it B REPRNTS

/ h of a shield. H
wao ot mnch of  tickd search logs in a few days
‘ No. 4417749 conducted hundreds of
o . = searchesover a three-month period on

"~ HOTEL
CHEVALIER

In Theatres Now!

topics ranging from “numb fingers” to

~  “60 single men” to “dog that urinates on

% everything.”
K-graph, VFGNN

* Relationship to fairness: Preserving privacy on sensitive information may
help ensure fairness

+ Related work: T,, d

[1] Ding, X., Zhang, X., Bao, Z., & Jin, H.. Privacy-Preserving Triangle Counting in Large Graphs. CIKM 2018.
E [2] Wang, Y., & Wu, X.. Preserving Differential Privacy in Degree-Correlation based Graph Generation. TDP 2013.

[3] Zhou, J., Chen, C., Zheng, L., Wu, H., Wu, J., Zheng, X, ... & Wang, L.. Vertically Federated Graph Neural Network for Privacy- 19

Preserving Node Classification. arXiv 2020.
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Overview of Part |

Group Fairness on Graphs

oal

Fairness on Graph

Ranking

Fairness on Graph
Clustering

l
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o
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PageRank

~
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Preliminary: PageRank @

* Assumption
— Important webpage = linked by many others

* Formulation
— Iteratively solve the following linear system
r=cA'r+ ({1 -oc)e
— A: transition matrix r: PageRank vector
c: damping factor e: teleportation vector

* Closed-form solution
r=(1-c)(I-cA") e
* Many variants exist, including

— Personalized PageRank (PPR)
— Random Walk with Restart (RWR)
— And many more...

[1] Page, L., Brin, S., Motwani, R., & Winograd, T.. The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab 1999.
E [2] Haveliwala, T. H.. Topic-sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. TKDE 2003.

[3] Tong, H., Faloutsos, C., & Pan, J. Y.. Fast Random Walk with Restart and Its Applications. ICDM 2006. 29




Fairness Measures for PageRank ?@L

* ¢p-fair PageRank
— Given: A graph G
— Definition: A PageRank vector is ¢-fair if ¢ fraction of total
PageRank mass is allocated to the protected group

— Variants and generalizations
* Statistical Parity: ¢ = fraction of protected group
 Affirmative Action: ¢ = a desired ratio (e.g., 20%)

* Targeted ¢-fair PageRank
— Given: (1) A graph G and (2) a subset of nodes §

— Definition: A PageRank vector is targeted ¢-fair if ¢ fraction of
PageRank mass w.r.t. the subset S is allocated to the protected
group in subset &

[1] Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., & Mamoulis, N.. Fairness-Aware PageRank. WWW 2021.

I




Prob. Defn.: Fairness-Aware PageRank@

* Given
— A graph with transition matrix A
— Partitions of nodes
* Red nodes (R): protected group
* Blue nodes (B): unprotected group
* Find: A fair PageRank vector r that is
— ¢-fair
— Close to the original PageRank vector r




Fairness-aware PageRank @

* Recap: PageRank

— Closed-form Solution
r=(1-c)I-cAT) e

* Parameters in PageRank

— Damping factor c: Avoid sinks in the random walk (i.e., nodes
without outgoing links)

— Teleportation vector e: Control the starting node where a
random walker restarts
* Question: Can we let the walker restart at a protected node or a node
near many protected nodes? «—— solution #1: Fairness-sensitive PageRank
— Transition matrix A: Control the next step where the walker goes
to

* Question: Can we let the walker go to the protected nodes more
frequently?




Solution #1: Fairness-sensitive PageRank Q@’@L

* Intuition
— Find a teleportation vector e to make PageRank vector ¢-fair
— Keep transition matrix A and Q7 = (1 — ¢)(I — cAT) 1 fixed
* Observation: Mass of PageRank r w.r.t. red nodes R
r(R) =Q'[R,:]e
— QT[R,:]: Rows of QT w.r.t. nodes in set R

* (Convex) Optimization prOblem The fair PageRank Q” e is as close as
min ”QTe _ I‘||2 possible to the original PageRank r

%
S. L. e[i] € [0, 1]’ Vi | The teleportation vector e is a
lell.= 1 probability distribution

”QT[:,R]e”1= ¢ ||1‘||1 The fair PageRank Qe
needs to be ¢-fair

— Can be solved by any convex optimization solvers




Example: Fairness-sensitive PageRank @

* Define ¢ = 1/3 and the protected node is the red node
* Original PageRank

Q' e
Q|08 |07|03 1/3 0.6
rows w.r.t. {
bluenodes | @1 0.7 | 0.9 | 0.5 13| r=Q"e=]07 Not ¢-fair
row w.r.t. 0.5 L
red nodes —~ @[ 03] 05 | 07 1/3 0.5 | 06707+05 3
* Fairness-sensitive PageRank
Q' e
@|o08|07|03 1/6 0.45
k:;)WS w.r.t. H-fair
venodes | @l 0.7 |09 |05 1/6| F=Q"&=|06 06 _1
row w.rt 0454+06+06 3
. —@|o03|05]07 2/3 0.6
red nodes

I




Fairness-aware PageRank @

* Recap: PageRank

— Closed-form Solution
r=(1-c)(I-cAD e

* Parameters in PageRank

— Damping factor c: Avoiding sinks in the random walk (i.e.,
nodes without outgoing links)

— Teleportation vector e: Controlling the starting node where a
random walker restarts

* Question: Can we let the walker restart at a protected node or a node
near many protected nodes?

— Transition matrix A: Controlling the next step where the walker
goes to Solution #2: Locally fair PageRank

* Question: Can we let the walker go to protected node more frequently?




Solution #2: Locally Fair PageRank E@L

* Intuition: Adjust the transition matrix A to obtain a fair
random walk

* Neighborhood locally fair PageRank

—Key idea: Jump with probability ¢ to red nodes and (1-
¢) to blue nodes

—Example

‘ Protected group 1/3

‘ Unprotected group X :‘ Locally Fair
1/3 (¢ =0.5)

1/3



Solution #2: Locally Fair PageRank E@L

* Residual locally fair PageRank
— Key idea: Jump with
* Equal probability to 1-hop neighbors
* Aresidual probability 6 to the other red nodes
— Example 1-6

‘ Protected group

‘ Unprotected group

1-6
§+——=1¢

* Residual allocation policies: Neighborhood allocation, uniform
allocation, proportional allocation, optimized allocation

I




Fairness-sensitive PageRank: Experiment ?@}f

* Observation: The teleportation vector allocates more weight to the
red nodes, especially nodes at the periphery of the network

PageRank Fairness-sensitive PageRank

‘ Protected group

‘ Unprotected group

<
I

------
...........




Locally Fair PageRank: Experiment @

* Observation: PageRank weight is shifted to the boundary
nodes

‘ Protected group Neighborhood Locally Fair PageRank

. Unprotected group

PageRank
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Preliminary: Spectral Clustering (SC) ?@L

+ Goal: Find k clusters such that4 Maximize intra-connectivity

minimize inter-connectivity

Optimization problem _~ Ratio cut

mUin Tr (UTLU)
s.t. UTUu =1
where L is Laplacian matrix of A, U is a matrix with k orthonormal column vectors

Solution: Rank-k eigen-decomposition
— U = eigenvectors with k smallest eigenvalues

 Example A
\ . .
All female individuals |~ '/ Highly .unfalr: The
are grouped together ] \ ‘ C|U5te””8| resdultsj )
are correlated wit
All male individuals are ﬁ gender
grouped together ‘/ o

[1] Ng, A. Y., Jordan, M. ., & Weiss, Y.. On Spectral Clustering: Analysis and an Algorithm. NeurlPS 2002.
E [2] Shi, J., & Malik, J.. Normalized Cuts and Image Segmentation. TPAMI 2000.




Fair Spectral Clustering: Fairness Measure S‘Mﬂl

Intuition: Fairness as balance among clusters

Given: A node set V with
— h demographic groups: V =V, UV, ..UV,
— k clusters: V = C; U (C, ..U Cy

* Define

.NnC
balance(C;) = mi Vs 0 G|

— € 10,1}, vie|1,2, ..,k
s:ts’gfh] |VS, N Cll [ ] [ ]

Intuition: higher balance - each demographic group is presented with similar
fractions as in the whole dataset for every cluster— fairer

. A
Example ® balance(C,)

N\
balance(C,) '/ \ O Vi N Cy| |V, NGy
. <|V1nC1| |V2nC1|> \ 7
= min

= min ,
) C' <|V20C2| [V N Gy
V2 NG| [V NG 2

=min<|‘©|’| ,‘?'\|>

S

_ <|'| I\ male group
= min ,
. l@/il I'I v,

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.

E 35




Fair Spectral Clustering: Solution ?@

* Fairness as linear constraint
— Given
* The spectral embedding U of n nodes in [ clusters (Cy, ..., C})
* h demographic groups (Vy, ..., %)
— Define

« fO)[{] =1ifi €V, and 0 otherwise

 F = a matrix with f(8) — (“:l—ﬂ) 1,, (s€[1,..,h—1]) as column vectors

— Observation: F'U = 0 < balanced clusters (i.e., fair clusters)
f( £2)  Fair fraction

* Example

@10 0.5 | 0.5 0.5 |-0.5
Sl1o 0.5 | 05 0.5 |-0.5
(1]o0 0.5 | 0.5 |05 ]|-05
) k=
AIE 0.5 | 0.5 05| 0.5
V5: male group ' 0l1 0.5 | 0.5 05| 0.5
Mo |1 0.5 | 0.5 -0.5| 0.5

I




Fair Spectral Clustering: Solution @

e Optimization problem
min Tr (UTLU)
s.t. UTU=L[FTU = 0| < How to solve?

e Solution
— Observation: F'U = 0 - U is in the null space of F”

— Define Z = orthonormal basis of null space of FT
— Rewrite U = ZY

min Tr (YTZTLZY)
s.t. Y'Y=I

— Solution: Rank-k eigen-decomposition on Z'LZ




Correctness of Fair Spectral Clustering S@L

* Given
- ,(ASEaI\r)I;JIom graph with nodes I/ by a variant of the Stochastic Block Model
— Edge proPabiIity between two nodes i and j
a, [ and j in same cluster and in same group
P(i,j) = b, [ and j not in same cluster but in same group
’ C, [ and j in same cluster but not in same group
d, [ and j not in same cluster and not in same group

forsomea>b >c>d
— A fair ground-truth clustering V.= C; U C,

 Theorem: Fair SC recovers the ground-truth
clustering C; U C, with high probability

e Example
— Standard SC is likely to return I/; U 1/,




Fair Spectral Clustering: Experiment S@L

e Observation: Fairer (higher balance score) with similar ratio cut
values for the proposed method (Algorithm 1 in the figure)

FriendshipNet --- gender

FacebookNet --- gender

0.8 15 60
0.8t
X
Q:)'_. 80.6 -
% Lc;O 4
S o
0.2}
0.2 — : 1 0
0 5 10 15 0

DrugNet --- ethnicity

==== Balance of data set
— — Standard SC

(6]

3 0.15 lI-— —— Algorithm 1 o

Q 14 Q)

c .

(O 0.1 %

(4°)

o C
0.05} "*

|
O o4 N
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Preliminary: Graph Embedding E@L

* Motivation: Learn low-dimensional node representations
that preserve structural/attributive information

* Applications
— Node classification
— Link prediction

— Node visualization Node clustering
o. ./""~g\/' = 7;"'"\\
/7 @ 1 08 .
o Example ™ n w ® ® & { u ® 'I 08 o ’ . ..‘ {\ L ,)
: v % \*@~__v/ " e 8 y LY
- 7 e 0y @
o * 3 :ﬁ
AN L LN
I g oe )
‘\” 8)\ //fr\_‘fal 00 05 10 15 20 25

== Link prediction
(a) Input: Karate Graph (b) Output: Network Embedding

Visualization of Node Embedding

[1] Perozzi, B., Al-Rfou, R., & Skiena, S.. DeepWalk: Online Learning of Social Representations. KDD 2014.
[2] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q.. LINE: Large-scale Information Network Embedding. WWW 2015.

[3] Tang, J., Liu, J., Zhang, M., & Mei, Q.. Visualizing Large-scale and High-dimensional Data. WWW 2016.




Preliminary: Setup of Graph Embeddings ?@L

* Two key components: Edge-wise scoring function + loss function

* Edge-wise scoring function

— Suppose e = (u, v); Z,, is embedding of u;

— Dot product: s(e) = s({z,,1,z,)) = zlz,

— TransE: s(e) = s((z,, 1,2,) = —||z, + T — Z,]|5
* Edge-wise loss function

— Suppose e; is i-th negative sample for edge e

— Max margin loss

Leage(5(e),5(eD), ., 5(em)) = zmax<1—s<e>+s<e ),0)

— Cross entropy loss

edge(s(e) s(ey), S(em)) = —log (a(s(e)) z log 1 - a(s(e )))




Compositional Fairness in Graph Embeddings [DcA]

* Why fairness for embeddings?
— Not just one classification task that considers fairness (e.g., ranking, clustering)

classification ranking cIustering
=) ‘ . '/U 0
= ﬁ ‘
male): 50% :Eg::?e;/’iv :((fn;?nlzl)e;/?/ . \uj T@
* Why compositlonal fairness? o

— Compositional fairness: accommodation to a combination of sensitive attributes
— Often many possible sensitive attributes for a downstream task

orange

* Gender: male vs. female

male

e Race®*: orange vs. green

* We use imaginary race groups to
avoid potential offenses

female

[1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

I



Representational Invariance as Fairness ZUDLIJE

* Intuition: Independence between the learned embedding
Z and a sensitive attribute a
Z, L a,,Vnodeu

where a,, is the sensitive value of node u

* Formulation: Mutual information minimization
I(z,,a,) =0,V node u
— Analogous to statistical parity in classification task
— Key idea: Fail to predict a,, using Z,,
— Solution: Adversarial learning




Compositional Fairness: Framework S@L

* Overview: The proposed compositional fairness framework

* Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (D)

Sensitive
Attributes
e _. Gender Gelr?der
IH| . 4 / V
N — . ‘ - Occupation 35 B8 — o“u?aﬁon
= \\
. Age Age

Node
Embedding

Filtered

Compositional 'Embedding| Discriminators

Filter

Input Graph




Key Component #1: Compositional Filter Q@@L

(Also called compositional encoder, i.e., C-ENC)

e Goal: Filter sensitive information from the embeddings
— The “filtered” embedding should be invariant to those attributes

* Formulation

1
C—ENC(w,S) = mz f(ENC(w))

keS
— Compositional filter: A collection of filters

— Filter: Trainable function f; (neural networks, e.g., MLP)

— Input: Node ID u and the set of sensitive attributes S (e.g.,
gender, age)
— Compositionality: Summation over all sensitive attributes



Compositional Fairness: Framework S@L

* Overview: The proposed compositional fairness framework

* Key components: (1) Compositional filter (C-ENC) and (2) discriminators (D)
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Key Component #2: Discriminators S@L

e Goal: Predict the sensitive attribute from the ‘filtered’
embeddings

* Formulation
D, (C—ENC(w,5),a*) = Pr(a, = a*|c - ENCw,$))
— Dy.: Discriminator for k-th sensitive attribute
— Input: Node u’s ‘filtered” embedding and attribute value

- Pr(au = ak|C — ENC(u, S)): Likelihood that node u has that
attribute value




Compositional Fairness: Loss Function -

* Edge-wise objective function
L(e) = Ledge (S(e) 5(61 S(em))

+/12 2 log Dk(C—ENC(”'S)'“k))

keS akEcﬂk
— Legge: Edge-wise loss function for graph embedding

— log (DR(C —ENC(u, S), a")) : The discriminator fails to predict sensitive
attribute correctly with the ‘filtered” embeddings

Sensitive
Attributes

D
rﬂ'| Gender Giiciar
/o N/ o
YR —> Occupation > e
= \
D
Age Age

Node Filtered
Embedding Filters Embedding Discriminators

Input Graph



Compositional Fairness: Experiment @

O

* Task: Classifying the sensitive attribute from the learned node
embeddings

— Baseline methods: Each adversary is a 2-layer MLP
* Baseline (no adversary): Vanilla model train without fairness consideration
* Independent adversary: independent adversarial model for each attribute

* Observations
— Accuracy of compositional adversary is no better than majority classifier

— Performance of compositional adversary is at the same level with
independent adversaries

MOVIELENSIM | BASELINE GENDER AGE OCCUPATION COMP. MAJORITY RANDOM

No AD- ADVERSARY ADVERSARY ADVERSARY ADVERSARY CLASSIFIER CLASSIFIER

VERSARY
GENDER 0.712 0.532 0.541 0.551 0.511 0.5 0.5 — AUC
AGE 0.412 0.341 0.333 0.321 9:313 0.367 0.141 }Micro
OCCUPATION 0.146 0.141 0.108 0.131 0.121 0.126 0.05 F1

I




Compositional Fairness: Experiment ?@L

e Task: Recommendation

* Observation: There is only a small increase in root mean
squared error (RMSE) compared with the vanilla model

1.8 —— Gender Adversary
1.7 —— Age Adversary
16 —— Occupation Adversary
— Compositional Adversary
1.5 .
—— Baseline No Adversary
L
w 14
= 13
o
1.2
1.1
1.0 —
0.9
0.8

25 20 75 100 1256 150 1786 200

Epochs




Compositional Fairness: Experiment ?@L

* Task: Trade-off between fairness and recommendation quality
— Fairness: Measured by regularization hyperparameter 4
— Recommendation quality: Measured by AUC and RMSE

* Observation: The proposed method achieves a good balance
between fairness and recommendation performance

1.00 —— Compositional Adversary
————— Baseline RMSE

(W]

2
= —— Compositional Gender AUC 2 0.95
= 060 === oc
< .
0.55 0.90
0.50 o 1 5 5 7o S niiinininininiuiuins il ittt sinini—
10 10 10 10 10 0 1 - 3 4
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Preliminary: node2vec E@L

* Goal: Learn node embeddings that are predictive of
nodes in its neighborhood

* Key idea: Skip-gram model with biased random walk

— The biased random walk learns
e Structural equivalence in BFS fashion
* Homophily in DFS fashion

— Example

* Return parameter p: How fast the
walk explores the neighborhood of
the starting node

* In-out parameter g: How fast the
walk leaves the neighborhood of the
starting node




Fairness in Graph Embedding S@L

* Statistical parity
— Given: (1) A sensitive attribute §; (2) multiple demographic
groups QS partitioned by &
— Extension to multiple groups: Variance among the acceptance
rates of each group in 95
biasS!(G®) = Var({acceptance—rate(G%)|G® € G°})

- Example: A network of four f ... Admitted ___~ Not Admitted

and two ] ,
— acceptance—rate(f)=3/4 i
— acceptance—rate (li\)=1 /2 i

i = var (5 3] =&

[1] Rahman, T., Surma, B., Backes, M., & Zhang, Y.. FairWalk: Towards Fair Graph Embedding. IJCAI 2019.

I



Fairness in Graph Embedding S@L

* Equality of representation - network level

— Intuition: Among all recommendations in the network, measure
the bias as the variance of the number of recommendations
from each demographic group

— Formulation
biasEReroup (gg) = Var({N(GS)|G‘S € QS})

* Example: In a social network of f and §
— Total recommendations

. RIIIEL]
-N(M) =4andN(}) =2
— bias®Rerour = Var({4,2}) = 1




Fairness in Graph Embedding S@L

* Equality of representation - user Level

— Z-share: Among recommendations p(u) given to a specific user u, measure the
fraction of users having sensitive value z

lp, (W]
lp(u)]

.. . . : . 1
— Intuition: Measure the bias as the difference between a fair fraction Z5 and the
average z-share over all users U

z—share(u) =

1 Yuey Z—Sshare(u)
b. ERyser _ . ueu
ias (2) 23] Ul . .

* Example: For gny user u in the social network of ten'ﬂ‘ and ten 'ﬁ‘
- |ZS| = Hﬂ,'ﬁ\}l — 2 and fair fraction — = =

1251 2 s o o
— The recommendations w.r.t. any user u are constant: w tw ﬂ\
— letz = lﬁ\ , we know p,(u) = 1and p(u) = 3
lpz (W] 1

— z—share(u) = ol =3

[
. 1 1/3 1
—_ blaSERuser(ﬁ\) = - — Zu’ / = —
2 20 6




Fairwalk: Solution @

* Key idea: Modify the random walk procedure in node2vec

* Steps of Fairwalk
— Partition neighbors into demographic groups
— Assign equal probability to each demographic group
— Select a demographic group to walk to
— Randomly select a node within the chosen demographic group




Fairwalk: Example @

* Example: Ratio of each demographic group
— Original network vs. regular random walk vs. fair random walk

network regular H fair

|| dl

percentage

0.0




Fairwalk vs. Existing Works E@L

* Fairwalk vs. node2vec

— Node2vec: skip-gram model + walk sequences by original
random walk

— Fairwalk: skip-gram model + walk sequences by fair random
walk

* Fairwalk vs. fairness-aware PageRank

— Fairness-aware PageRank: The minority group should have a
certain proportion of PageRank probability mass

— Fairwalk: All demographic group have the same random walk
transition probability mass



Fairwalk: Statistical Parity

* Observations
— Fairwalk achieves a more balanced acceptance rates among groups
— Fairwalk increases the fraction of cross-group recommendations

regular E fair

26—1 LA - gender London - gender
D5
(p]
Q
-'('_E; le™?
o
g o |
c ¥ NN R S R
Digue LA - race London - race
o
Q
O,
Q 2e
<
le™

O N S N Y SN IO T TN ] I T 0> B T

OE NN NV OO AV NERS (N A ey
Groups

%



Fairwalk: Network-level Equality of Representation j‘IDL\(IE

* Observation: Fairwalk increases the number of recommendation
for underrepresented groups

regular B fair

LA - gender London - gender
6e®
{9
0 Q Y Q N Q Y Q N
N Nt N e Y N N N
LA - race London - race

p—
0,

Number of Recommendations

AN AR Y Y L AN AT R > Y

Groups




Fairwalk: User-level Equality of Representation Z‘lllcllE

e Observations

— Fairwalk decreases the user-level bias
— Z-share distribution of Fairwalk leans towards the fair fraction

Bias for User-level Equality of Representation Z-share Distribution
regular  fair
gender ’ race genc!er 0 race 0 race 1 race 2
0 1 ] 0 1 2

network | 0.104 0.104 | 0.117 0.392 0.275
node2vec | 0.103 0.103 | 0.115 0.387 0.272
fairwalk | 0.068 0.068 | 0.054 0.288 0.234

Los Angeles

A

LA

number of users

network 0.097 0.097 | 0.183 0.481 0.298
node2vec | 0.112 0.112 | 0.176 0474 0.298
fairwalk 0.095 0.095 | 0.135 0417 0.282

London

[London

0 0.5 1.0 03 10 03 l 0 08 1

fraction of protected group
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Preliminary: Conditional Network Embedding j‘lhcﬂl

* Goal: Find an embedding Z using maximum likelihood

timation of P(G|Z) with th irical graph G
estimation of P(G|Z) wi < empirical grap Prior: P(G)

* Key idea: Bayes rule

P(Z|G)-[P(G)——
P(G|Z) =—F—=—
(612) .
Likelihood:P(Z|G)
G Rt 2 0
o—©0 - O Marginalization: P(Z)
@
O N P(Z) = 2 P(Z|G)P(G)
R G

[1] Kang, B., Lijffijt, J., & De Bie, T.. Conditional Network Embeddings. ICLR 2019.

I



Preliminary: Conditional Network Embedding Z‘IDLIJE

* Key idea: Modeling degree distribution into prior
— Given
* (1) A degree distribution: p4eg
* (2) Arandom graph: G = (V, E) with node set I/, edge set E
* (3) Degree constraint: degree distribution of G is pdeg(G) = Pdeg
— Find: A maximum entropy distribution p(G) that satisfies degree constraint

— Result: P(G) — H(u,v)EE Dy H(u,v)&E(l — puvr Probability that node u

and node v are connected

An instance of G Degree distribution pge, Prior P(G)
ojl1/0lo/of0o]|0]O 1 ol6l.11.11.11.0]1.0].1
Nodeull 1101 [1]1[1]0]1 6 || Maximize entropy of G 6/9/9|8/8|6|.6].8
ol1]o0|o[1]0]0[1 3 1191644l 1[4
ol1{0|o|lo0]0]1]0 2 11.814]2l201]11].2
of1/1]/o0|ololo]o 2 s.t. degree constraint 108lal2l2l1]1]2
ol1/olo|o|ol0]O 1 For every u ol6l1]1]l1].0/.0].1
olo|lol1]|o0|0]|0|O 1| 2vPuv = degree of uin pyeg ol6l.11.11.1]1.0/.0].1
ol1/1]0|lo]0|0]oO 2 11.814]2l201]11].2




DeBayes: Fairness Measures @

* Tasks
— Task #1: Fair network embedding

Downstream task

— Task #2: Link prediction
— Goal: Debias the embeddings in order to debias the link prediction

* Fairness measures
— Low-level fairness: Fairness for network embedding

— High-level fairness: Fairness for link prediction

[1] Buyl, M., & De Bie, T.. DeBayes: A Bayesian Method for Debiasing Network Embeddings. ICML 2020.

I




DeBayes: Fairness Measures S@L

* Fairness for network embedding: Representation bias (RB)
1
RB = ;mAUC({P(A(szv)Nv 3A)

— S: A sensitive attribute value
— A(v): Node v’s sensitive attribute value
— V;: The set of nodes with sensitive value s, i.e., {v|A(v) = s}

— P(A(v)|z,): Probability of predicting sensitive attribute value A(v) of node
v using its embedding z,,
1
S
— AUC(:+-): One-vs.-rest AUC

Weighted average, weighted by size of demographic group

e Intuition

— Fair embedding should not infer the ground-truth sensitive attribute value
- low P(4A(v)|z,)
— low P(A(v)|z,) = low true positive rate > low AUC

[1] Buyl, M., & De Bie, T.. DeBayes: A Bayesian Method for Debiasing Network Embeddings. ICML 2020.

I




DeBayes: Fairness Measures @

 Fairness for link prediction
— Goal: Main concern should be fairness in downstream task
— Statistical Parity: Equal acceptance rate
— Equal Opportunity: Equal true positive rate

— Accuracy Rate Parity: Balance in top k% edge predictions
1.

* Example: Accuracy rate parity
— 10 edge predictions in total
— Top 2 (i.e., top 20%) predictions in consideration
— Highly biased: Both are red-red links

top 20%

§e8e00¢

[1] Buyl, M., & De Bie, T.. DeBayes: A Bayesian Method for Debiasing Network Embeddings. ICML 2020.

I




DeBayes: Key Idea S@L

* Two types of prior

— The biased prior: a prior with information about sensitive
attribute

— The oblivious prior: a prior without information about sensitive
attribute
e E.g., The prior used in conditional network embedding
* Key idea: Debias embedding by modeling bias in prior
— Learn embeddings with the biased prior
— Evaluate embeddings with the oblivious prior

* Question: How to find the biased prior?




DeBayes: The Biased Prior Q@’@f

* Given
— (1) Random graph: G (e.g., an instance as shown below)

— (2) Sensitive attribute: A = {blue, red}

— (3) Fairness-aware distribution: Blue/red degree distributions p(blue) (red)

deg ’ Fdeg
— (4) Fairness-aware degree constraint: pél;;ue)(G) - pgzlgue) and pégegd)(c) = pézegd)

 Find: Maximum entropy distribution p(G|A) that satisfies the fairness-aware degree

constraint
An instance of G (blue) (red)
00000000 Pdeg ~ Pdeg
@/oj1]/ojofololo]oO 1 0| Maximize entropy of G given A
1({0([1]1 1F) 0 1_|| 4 1 s.t. fairness—aware degree constraints
0j1/0/0[0j0]O0]1 1 ] - Bluedegreedistributionpézgle)
0j1j0j0f1jo0}1]0 2 L fornodeuin G
0[{1{011]0(0(0|O0 2 0 . . d
* Red degree distribution pg;e )
o|0f(o0|OfO0|O|1]1 0 2 . dewinG &
oloflof1]of1]o]o0 1 1 ornodeuin
0O|1(1({0|10(1]0{0 2 1




DeBayes vs. Conditional Network Embedding (CNE) jUDL\[IE

l
CNE Embeddings I DeBayes Embeddings

network biased prior

.- biased degree]| F i
constraint ‘

|

I | s
B
3 I I' 0 I 1
I B g . .
D i s . g
R e -
I .':; : ..'.. :

network

degree

constraint

P R
Observation: Embeddings are less biased toward the node color




DeBayes: Workflow

P(G|Z,A)

Degree . .Biased degree
constraint constraint
! ! Evaluation

(link prediction) Training

R4 S Lgep= argmax P(G|Z,A)
P(G|Z gep) AR ‘ P(Z|G,A)P(G|A)
P(Zaep|G)P(G) I 1¢ 77y
T P(Zyw) P(Z|G)P(G|A)

= argmax
5 P(Z[A)




Fairness for Network Embedding: Experiment j‘IDLIJE

* Observation: DeBayes achieves the best trade-off between link
prediction AUC and representation bias (RB)

X 0DBLP (1 attribute) Rlegidit (10 attributes)
. @ O & . B ] O CNE
% % @ DeBayes
< <
0.5 A f 0.5 A .. CEC (A _ 0)
0.5 1.0 0.5 1.0
RBcontinent RBsub CEC (/1 < O)
Movielens 100k (3 attributes)
1.0 1.0 1.0
2 R . 1 % * = /\ node2vec
S A Fairwalk
<
0.5 & 051 ¢ 051 ¢ ‘ R
0.5 1.0 0.5 1.0 0.5 1.0
RBgender RBage RBoccupation




Fairness for Link Prediction: Experiment ?@L

O

* Observation: DeBayes achieves the best trade-off between link prediction AUC
and statistical parity (DP), equal opportunity (EO) and accuracy rate parity (ARP)

DBLP Reddit Movielens 100k
1.0 18 1.0 1.0 .
O . -9 O cNE
>
< @ DeBayes
0.5 . 054 - | 0.5 >
DI:)continelr?t DPsublO_ ngé(r)\;:ier
1.0 1.0 1.0 — CFC (1=0)
U © L=
9 CFC (1> 0)
<
0.5 . 054{—* 05—
1071 1071 1072
EOcontinent EOsub EOgender A notiezyee
1.0 o 1.0 1.0 g
. " A Fairwalk
O
o
<
0.5 1 . 0.5{— 054 ‘ Random
10-2 10-3 10-*
ARPcontinent ARPsub ARPgender
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Preliminary: Graph Mining Pipeline E@L

* Graph mining: An optimization perspective

input graph A mining model w/ parameter 6 mining results Y
'oo, '00, '00, minimize

I(AY, 0) il
output > [
gl
— Input:

* Input graph A Minimize task-specific
« Model parameters 9 loss function [(A, Y, )

— Output: Mining results Y

* Examples: Ranking vectors, class probabilities, embedding




Preliminary: Classic Graph Mining Algorithms

Examples of Classic Graph Mining Algorithm

ch

Mining Task Task Specific Loss Function [() Mining Result Y* Parameters
. damping factor ¢
mincr' (I — A)r + (1 — ¢)||r — e||? PINg
PageRank r ( or+ ( )l I PageRank vector r teleportation vector e
Spectral min Tr (U’'LU) .
P . u eigenvectors U # clusters k
Clustering s.t. UU=1
n n
Ali, j] (logg (—=X[j,: 1X[i,:1") o i :
LINE (1st) min Z Z ( ) embedding matrix X embeddw_]g dimension d
X i=1j=1 # negative samples b
+b]Ej'~Pn [log g(=XI[j’,: 1X[i,:]1)]
S @ -® %@ e |
X b ranking o N TSN | : | :
vey e % algorithm g LI B ' N i | i I
. o AN gﬁ v ’ED\: 7"} -~® i Network :embedi i
v =\ @\ @& G o 01 1 1 ! !
o w = i i 0 01 0 1! : |
...' :..o s, . o 110 1 0 : ! !
L, ."'}. @ E i (1) é o o0 E i




InFORM: Individual Fairness on GRaph Mining j‘IDLHE

* Research questions
Q1. Measures: How to quantitatively measure individual bias?
Q2. Algorithms: How to enforce individual fairness?
Q3. Cost: What is the cost of individual fairness?

[1] Kang, J., He, J., Maciejewski, R., & Tong, H.. InFORM: Individual Fairness on Graph Mining. KDD 2020.

I




Problem Definition: InFORM Measures ?@}f

* Questions
— How to determine if the mining InpatGraph:A

results are fair? /\T

— How to quantitatively measure the
overall bias?

* Input I
— Node-node similarity matrix S /
* Non-negative, symmetric N B
— Graph mining algorithm [(A,Y, 6) PR
* Loss function I(+) T
« Additional set of parameters 6 Mining Results: Y Sim“arity:iikszs
— Fairness tolerance parameter € : “°"‘i"’v\\ ,'M\
e Output Y[? : DIfCYLE, Y ) < 2 \“j h4
— Binary decision on whether the _— | ¢ IR
mining result is fair : Node/s [
— Individual bias measure Bias(Y, S) v - a

I




Measuring Individual Bias: Formulation Q@@L

* Principle: Similar nodes = similar mining results

* Mathematical formulation

€
IY[E,: ] =Y, If < o
S[i,Jj]
— Intuition: If S[i, j] is high, ﬁ is small > push Y[i,:] and Y[}, : ] to be more similar
— Observation: Inequality should hold for every pairs of nodes i and j
* Problem: Too restrictive to be fulfilled

* Relaxed criteria: }.;_; > "1 [|Y[i,:] — Y[J, II2S[i,j] = 2Tr(Y'LgY) <me =6

<X

Vi,j=1,..,n

02000000




Measuring Individual Bias: Solution @

* InFORM (Individual Fairness on GRaph Mining)

— Given: (1) A graph mining result Y; (2) a symmetric similarity
matrix S; and (3) a constant fairness tolerance o
—Y is individually fair w.r.t. S if it satisfies

)
Tr(Y'LsY) < >
— Overall individual bias is Bias(Y,S) = Tr(Y'LgY)

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.

I




Lipschitz Property of Individual Fairness ?@L

* Connection to Lipschitz Property

— (D4, D,)-Lipschitz property: A function f is (D4, D,)-Lipschitz if
it satisfies

Di(f(@), f()) < LD,(i, /), V(x,y)

e L is Lipschitz constant

— InFoRM naturally satisfies (Dq, D,)-Lipschitz property as long as
« fQ) =Y[i:]

* Di(fQ), (D) = IIY[L,: 1= Y[, : 117, D2 (i j) =

— Lipschitz constant of InNFORM is €

S[l jl

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.

I




Problem Definition: InFORM Algorithms Q@@L

* Question: How to mitigate the A - g-
bias of the mining results? \_. e 31
* Input = o =N :
— Node-node similarity matrix S }/( ? :
— Graph mining algorithm [(A,Y, 0) -
— Individual bias measure Bias(Y, S) G
* Defined in the previous problem

(InFORM Measures) o

e Output: Revised mining result Y™
that minimizes
— Task-specific loss function [(A,Y, 0)
— Individual bias measure Bias(Y, S)

-
131
-
-
-
-
-




Mitigating Individual Bias: How To E@L

* Graph mining pipeline

input graph A mining model w/ parameter 6 mining results Y

101010
QI0IOI
DIOI0

minimize
[(AY,0) .
outpu> -
A

* Observation: Bias can be introduced/amplified in each
component
— Solution: Bias can be mitigated in each part

 Algorithmic frameworks

— Debiasing the input graph
— Debiasing the mining model } mutually complementary

— Debiasing the mining results

I




Debiasing the Input Graph

e Goal: Bias mitigation via a pre-processing strategy

e Intuition: Learn a new topology of graph A such that

— A is as similar to the original graph A as possible
— Bias of mining results on A is minimized

* Optimization problem _ consistency in graph topology
~ 2
min J = ||A - Al + aTr(Y"LgY)
Y . ™ bias measure
s.t. Y=argminy [(AY,0)

* Challenge: Bi-level optimization
— Solution: Exploration of KKT conditions

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
E [2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI 2015.

oal



Debiasing the Input Graph @

* Considering the KKT conditions,
min J = [|& - Al|, + «Tr(Y"LsY)

S. L. ayl(K,Y, 0) =(
* Proposed method
(1) Fix A (A = A at initialization), find Y using current A
(2) Fix Y, update A by gradient descent
(3) Iterate between (1) and (2)

e Problem: How to compute the gradient w.r.t. A?




Debiasing the Input Graph S@L

Key component to calculate

« Computing gradient w.r.t. A L
a oY
— =2(A—A)+a||Tr| 2YLs —=—
0A dAli, ]
(] @ 0
dj —{, -+ (—,{ ' — diag (—{,) , if undirected
Y _JoR" oA A
A 0
dA —,]v if directed
J0A
— Y satisfies 0yl(A,Y,0) = 0
~-H= [Tr (Z?LS ag[‘i(j])] is a matrix with H[i, j] = Tr (Z?LS ai\?[‘i(j])

* Question: How to efficiently calculate H?

I



Instantiation #1: PageRank @

* Goal: Efficiently calculate H for PageRank
* Mining results Y: r = (1 — ¢)Qe

* Partial derivatives H: H = 2cQ'Lgr

* Remarks: Q = (I — cA)~ !

* Time Complexity
—Straightforward: 0(n3) Qs

% |
—Qurs: O(my + m, +n)
* ma: number of edges in A ~
* mg: number of edgesin S

n: number of nodes




Instantiation #2: Spectral Clustering @

Goal: Efficiently calculate H for spectral clustering

Mining results Y: U = eigenvectors with k smallest eigenvalues Low-rank
Partial derivatives H: H = 2 Y'%_, (diag(M;Lgu;u;") 1,5l — MiLSuiuiF
* Remarks
— (A;,u;) = i-th smallest eigenpair
- M; = ({1 - Ly)*
Time complexity
— Straightforward: O(k?(m + n) + k3n + kn3)
— Ours: O((k + r)(my + n) + k(m, +n) + (k +1r)?n)

* k:number of smallest eigenvalues M;Lgu; u;
e r:number of largest eigenvalues X |

Vectorize diag(M;Lgu;u;")
and stack it n times

!/

* mq: number of edges in A

* m,: number of edgesin S
* n:number of nodes




Instantiation #3: LINE (1st) S@L

Goal: Efficiently calculate H for LINE (1st)
T (A[i,j]+A[j,i])
d;di*+d}*a

i
— d; = outdegree of node i, T = Y%, d>/*

Partial derivatives H: H =|2f (A + A') o Lg|—|2diag(BLg)1,xx,

Remarks Element-wise in-place calculation Vectorize diag(BLs) and

— f(-) calculates Hadamard inverse, o calculates Hadamard product stack it 7 times
- B = Zf (d5/4(d—1/4)’ + ’ + f (d3/4(d1/4)/ +|d:11><n Wlth dx[l] _ dic

Time complexity Stack d n times
— Straightforward: 0(n>)
— Ours: O(my + m, +n)
* mq: number of edgesin A

Mining results Y: Y[i,: ]Y[j,: ]’ = log —logh

and b = number of negative samples

s

* m,: number of edgesin S

* n:number of nodes




Debiasing the Mining Model E@L

* Goal: Bias mitigation during model optimization

* Intuition: Optimizing a regularized objective such that

— Task-specific loss function is minimized
— Bias of mining results as regularization penalty is minimized

° Opt|m|zat|on prob'em /task-specific loss function

min J=1(AY,0)+ aTr(Y ‘[isY)

bias measure

e Solution
— General: Solve by (stochastic) gradient descent
ZaLsY
— Task-specific: Solve by specific algorithm designed for the graph
mining problem

* Advantage
— Linear time complexity incurred in computing the gradient

d] _ Ol(AY,0)
Y oY

_|_

I




Debiasing the Mining Model: Instantiations Z‘IDLIJE

* PageRank
— Objective function: min cr’(I — A)r + (1 — ¢)|Ir — e||% + ar'Lgr
r
— Solution: r* = ¢ (A — %LS) r'+(1—-ce
* PageRank on new transition matrix A — %LS

¢ IfLg=1-S,thenr” = (-—A+-258)r +

+a 1+«

1-c
1+«

e

* Spectral clustering
— Objective function: mUin Tr(U'LAU) + aTr(U'LgU) = Tr(U'Lp44sU)

— Solution: U" = eigenvectors of L, 45 With k smallest eigenvalues
e Spectral clustering on an augmented graph/A + aS

e LINE (1st)
— Objective function

max log g (x;X;) + bE;/cp_ [logg(—xjrx,’;)] —a||x; — Xj||iS[i,j] Vi,j=1,..,n

Xi;Xj
— Solution: Stochastic gradient descent




Debiasing the Mining Results E@L

* Goal: Bias mitigation via a post-processing strategy

* Intuition: No access to either the input graph or the graph
mining model

* Optimization problem e

min J =Y —=Y|l%+ aTr(Y'LgY)

bias measure, convex

consistency of mining results, convex

— Y is the vanilla mining results
e Solution: (I + aS)Y* =Y

— Convex loss function as long as &« = 0 - global optima by 2—‘]( =0

— Solve by conjugate gradient (or other linear system solvers)

* Advantages
— No knowledge needed on the input graph
— Model-agnostic




Problem Definition: InNFORM Cost E@L

* Question: How to quantitatively characterize the cost of
individual fairness?

* Input
— Vanilla mining result Y

— Debiased mining result Y*
e Learned by the previous problem (InFORM Algorithms)

e Output: An upper bound of ||Y — Y*||¢

* Debiasing methods
— Debiasing the input graph
— Debiasing the mining model
— Debiasing the mining results — main focus

depend on specific graph topology/mining model



Cost of Debiasing the Mining Results S@L

* Given
— A graph with n nodes and adjacency matrix A
— A node-node similarity matrix S
— Vanilla mining results Y
— Debiased mining results Y* = (I + aS) ™'Y

* If ||S — Al|r = A, we have

IV = ¥l < 207 (& + Jrank(a) I

* Observation: The cost of debiasing the mining results depends on
— The number of nodes n (i.e., size of the input graph)
— The difference A between A and S

— The rank of A == could be small due to low-rank structures in real-world graphs
=P could be small if A is normalized




InFORM: Experiment e

* Graph mining task: PageRank

* Observation: Effective in mitigating bias while preserving the
performance of the vanilla algorithm with relatively small changes
to the original mining results

— Similar observations for spectral clustering and LINE (1st)

/ < 7 < Deﬁasix\the Input Gr,

Datasets y \ éaccard Index |/{ sine Similarity
Diff KL ec@50 | NDCG@50Y Reduce [\Time iff KL rec@50 | NDCG@5% / Reduce [\ Time
Twitch / 0.109 | 5.37 x 10~*\//' 1.000 1.000 24.7% | ¥564.9 J0.299 | 5.41x 103 ' 0.860 0.899 62.9% |4649.3
PPI [ 0.185 | 1.90x 10~ Kk  0.920 0.944 \43.4% | B84.4f 0.328 | 8.07x 1073 J[\ 0.780 0.838 [\ 68.7% |1636.8
eblasing thelMinling Model | |
Ditise | Jaccard Index [ | | Cosine Similarity |
Diff KL rec@50 | NDCG@5C¢ | Reduce im Diff KL I ’rec@50 | NDCG@ 5{ educe | Time
Twitch| ~ 0.182 | 4.97 x 10~ 0.940 0.958 20% | §6.14  0.315 | 1.05 % 10~ 0.940 0957 || ]73.9% | J2.73
PPI | | 0.211 | 478 x10°\[J 0.920 0.942 0.8% | §0.76, 0.280 | 9.56 x 10~ 0.900 0928 | |J67.5% | Jo.50
\ bfasing the ining Results \
Pitasets Jaccard Index Cosine Similarity
Diff KL Rrec@50 | NDCG@50 )| Reduce V ime \Diff KL Rrec@50 | NDCG@5¢'\ Reduce [ Time
Twitch | §035 | 9.75 X 1 980 0.986 / |\ 33.9% J 0.033 01 | 5.84x107° | Q940 0958/ |\ 44.6% J| 0.024
PPI | 0.0u3 | 1.22 x40~ 0. 0.9 \7.07/ 0.020  0.1% [ 6.97x407° | 0.5 0,998 \g5.0%/ | 0.019
N




Overview of Part Il E@L

Individual Fairness on Graphs

l |

Optimization-based
Approach

4 ) 4 )

e Laplacian e Ranking-based
regularization-based individual fairness
individual fairness

Ranking-based
Approach

. J . J




Individual Fairness on GNNs @

* Goal: Debias a graph neural network (GNN) to ensure its
output is individually fair

* Key challenge: Distance calibration

Input Space Output Space
M()
X ?/ \* M (x)
dy(x,¥) 1 2 dy (M), M(y))
! M(y)

y .
oL MO

[1] Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.

I




Key Challenge: Distance calibration s

 Existing formulation: Lipschitz condition (used in InFORM)
di(M(x),M(y)) < Ld,(x,)

distance metric_~" ™ distance metric
in output space in input space

* Limitation: Direct distance comparison fails to calibrate the differences between
different individuals

o U250 U4
& o) ‘ A &
y ¥U Wy Y i

0 (90|85]|30|95 |90 lbothLd(U1 u4) and Ld( uz, U4) are25'

* Example

™ o0|0|1]|20([3]2

8|1 ]|0]|70(20| 2

30|20]70| 0 |50 | 50

U4

®)(o5(3|20|50]0]5 o 0 ) @
9022|505 (0 D(uz, us) < Ld(uz, Us) <&~
(a) Outcome distance matrix (b) Lipschitz condition judgement
from distance metric D based on human knowledge

Question: Can we achieve fairness with natural calibration across individuals?




REDRESS: Ranking basEd InDividual FaiRnESS Z‘IDEHL

* Ranking-based individual fairness
— Given: (1) The pairwise node similarity matrix S of 'E\he input graph G; (2)
the pairwise similarity matrix S¢ of the GNN output Y
— Y is individually fair if, for each node i, it satisfies that
ranking list derived by S¢[i, :] = ranking list derived by S¢[i, :]

 Example
Ranking list derived by S¢[i, ] Ranking list derived by Sy¢[i, :]

Consistent
- o

* Advantage: Naturally calibrate across individuals
— No direct distance comparison




REDRESS: Framework Q@@h

* GNN backbone model

EEEE ,
— Learn node representations

—p | GNN Model |

Input Graph




REDRESS: GNN Backbone Model @

* Goal: Learn node representations by a GNN
* Formulation: [-th GNN Layer

pD = 4 (AGG ({hgp: uE N U {v}}))

— hl(,l): Embedding of node v at [-th layer
— AGG(-): Information aggregation function (e.g., mean, weighted
sum)
— o(+): Activation function (e.g., ReLU)
— NV (v): Neighborhood set of node v
* Advantage: No restriction on the GNN architecture

— REDRESS works on any GNN model




REDRESS: Framework ¥l

- . .. L
Module 1: Utility optimization
HEEE
Utility 1 Y - ...
—> [GNN Model = Uilityloss @@ e Utility maximization
— Minimize the downstream
Ground truthY Predigtion? ] task-specific loss

Input Graph




REDRESS: Utility Maximization Q@@L

e Goal: Minimize the downstream task-specific loss
function

* Choice of loss function: Cross-entropy loss

ut111ty z Y l ] 1OgY[l ]]

(i,))ET
—Y[i,j]: i-th row and j-th column in ground truth Y

—Y[i, j]: i-th row and j-th column in GNN predictions Y

— J': A set of tuples
* Node classification: T is a set of (node, class) tuples

* Link prediction: T is a set of (node, node) tuples




REDRESS: Framework

GNN Model |
A

Gradient

backward
fnpur Graph Similarity computation

Module 2: Individual fairness optimization vy
__TopK _ __TopK _ SRR
: .: Gradient : ] Similarity Om
I : computation | i : ranking o) [ [ | ]|
| | - | — ONNENE
L ) b L - g OHEEEE
. . o] | | [ ||

Ground truth ranking

Y Similarity ranking

Outcome similarity Sy

Individual fairness
optimization

— Enforce ranking-based
individual fairness

ch



REDRESS: Individual Fairness Optimization @

* Given: (1) Pairwise node similarity matrix S; of input graph G and
(2) pairwise similarity matrix S¢ of GNN output Y

e Goal: For each node i, ensure that the ranking lists derived from
S¢li,:]and Sgli, : ] are similar

’__——§

n Rankings ofu3 and’ *r

u, are different m
43 Ug 7 Uz Us | two ranking lists,  Us

\‘—_—

\~—-—

* Problem: Ranking is a non-differentiable operation

— loss on the ranking lists will be non-differentiable




REDRESS: Individual Fairness Optimization @

e Solution

— Consider the relative ranking orders of every node pair in S
and Sy

— Ensure that every node pair’s relative orders are consistent

across S; and Sy y

* Example: Ranking lists of node u, 9

Ranking list derived by S¢[1, :] Ranking list derived by S;[1, ¢]

‘__
-
- \\ - ~

D ®0 6 ® 0.C
{ @y Oy ) e A v W e

\
s Uz Ug 7 Uz Us N Ug uz » Uz Us

’_——§

\‘__—

\~—-—




REDRESS: Individual Fairness Optimization @

* How to calculate relative ranking order
— Key idea: Relative ranking order of u and v = Probability that u
ranks higher than v
* Inspired by learning-to-rank

— Input space: Pairwise node similarity matrix S of graph G
1 uranks higher than v

P, (1) = %(1 + T (D)) T,,(i) =< 0 wand v has the same rank
—1 v ranks higher than u

— Output space: Pairwise similarity matrix Sy of GNN output Y

~ . 1
Py (i) = 1+ o —a(Sgliul-Sqliv])

where « is a constant scalar
— Fairness loss for a node pair

Ly (i) = =Py (i) log puv(i) — (1 — Puv(i)) log (1 - puv(i))




REDRESS: Individual Fairness Optimization Q@@L

* Solution: Focus on top-k similar nodes for each node i in Sy
— Individual fairness: Similar outcomes for similar individuals

— Define zg,, = similarity metric for two top-k ranking lists (e.g., NDCG@k)

Lfairness = S“ S“ S“ ILuv(i) |Az@k |u,v
[ u v

0(nk?) time complexity >

where |Azgg |, , = absolute value changes in zgy, if nodes u and v are swapped
* Intuition of |[AZgy/|,, 4

— High |4zgg |y » = u and v are dissimilar - more penalty if ranked wrong
o Example |Azgp| 35 = |2@k (Listye, Listyy;) — |

o 06

/ Ug Uz Us
(¢ o n List,,;: Predicted ranking.
) [ ]
Uy Uy Usg
. an
Listg,: Ground truth ranking. i o
Us Ug Uz

List,,;": Ranking with u; & ug switched.




REDRESS: Total Loss Functions @

 Utility loss
Lutility - = z Y[l,]] lOg?[l,]]
(1,))ET
* Fairness loss
Ly, (i) = =By, (1) log puv(i) — (1 — Puv(i)) log (1 - puv(i))

Lfairness = Z Z Z L, (0) |Az@k|u,v
I u v

L= Lutility + ¥ Ltairness
where y is the regularization hyperparameter

* Total loss




REDRESS: Experiment E@L

 Observations for node classification

— Comparable performance on model utility compared with the
best ones

— Best performance on the ranking-based individual fairness

* Similar observations for link prediction

Vanilla 9059+ 03( — ) 5084x12( — ) 9059+ 03( — ) 1829+08( — )

— InFoRM 88.66 + 1.1 (—2.13%)  53.38 + 1.6 (+5.00%) 87.55 + 0.9 (—-3.36%)  19.18 + 0.9 (+4.87%)

PFR 87.51 + 0.7 (-3.40%)  37.12 + 0.9 (—27.0%) 86.16 + 0.2 (—4.89%)  11.98 + 1.3 (—34.5%)

e REDRESS (Ours) 90.70 + 0.2 (+0.12%)  55.01 + 1.9 (+8.20%) 89.16 + 0.3 (-1.58%)  21.28 % 0.3 (+16.4%)
Vanilla 8748+ 08( — ) 7400x01( — ) 8748+ 08( — ) 3236%03( — )

o InFoRM 88.07 + 0.1 (+0.67%)  74.29 % 0.1 (+0.39%) 88.65 + 0.4 (+1.34%)  32.37 + 0.4 (+0.03%)

PFR 88.31 + 0.1 (+0.94%)  48.40 + 0.1 (—34.6%) 84.34 + 0.3 (—-3.59%)  28.87 + 0.9 (—10.8%)

REDRESS (Ours) 90.01 + 0.2 (+2.89%)  76.60 % 0.1 (+3.51%) 89.35 + 0.1 (+2.14%)  34.24 + 0.2 (+5.81%)
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Recap: Counterfactual Fairness ?@

e Definition: Same outcomes for ‘different versions’ of the same

candidate
Pr(f/szs1 =cCls =51, x = X) = Pr()?5=52 =cCls =5,,x = x)

- Pr(flszs1 =cC|s =5, x = x): version 1 of X with sensitive demographic s

- Pr()?5=52 =cC|s =85y, x = x): version 2 of X with sensitive demographic s,

* Example: Causal graph of graduate college admission

Unfair: gender and race can
affect admission decision

grade




Preliminary: Stability @

* Definition: Perturbations on the input data should not
affect the output too much

 Mathematical formulation: Lipschitz condition
di(M(x),M(%)) < Ld,(x, %)
— M: A mapping from input to output
— d: Distance metric for output
— d,: Distance metric for input
— L: Lipschitz constant

— X: Perturbed version of original input data x




Counterfactual Fairness vs. Stability Z‘IDLIJE

* Given
— A graph with binary adjacency matrix A
— A node u with feature vector x,,
* Information vector of node u: b, = [xu; Alu, :]]

— Perturbed version i of node u with information vector by,
* Perturbation(s) on x, or A[u, :]
— Counterfactual version i° of node u
* Modification on the value of sensitive attribute s in x,,
— An encoder function ENC(+) that learns the embedding ENC(u) of node u

 Counterfactual fairness
ENC(u) = ENC(@1°)

 Stability -
IENC() — ENC@)l, < L||by — by

* Question: Can we learn node embedding that is both
counterfactually fair and stable?

[1] Agarwal, C., Lakkaraju, H., & Zitnik, M.. Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.

E 118




NIFTY: Contrastive Learning-based Framework |

Input Graph
. Label 1
Label 2

j i
B GAN U\
] \ /u H F {female,male}
&
H ColLinterfac;cuaI Graph

Change the value of 1
\ : a sensitive attribute
: 0 as : 0
o : : \ / 5 [] '
\ : : 5] — L
5 |
4 |
|

Perturb the edge and,
| attribute of node u

Node/Edge Pertuﬁ:)ahon

maximize similarity among embeddings of u, #, 4i°




NIFTY Layer and NIFTY Encoder i)

* Given

- hgk): Representation of node u at k-th layer
— NV (u): Neighborhood of node u

- Wc(lk): Self-attention weight matrix at k-th layer
(k)

- W = ”w?{)” : Lipschitz-normalization on W'
p

(
a

: Spectral norm of Wék)
p

— WT(lk): Weight matrix associated with the neighbors of node u

e

* The k-th NIFTY layer learns node representation by

h(o — G<W5k—1)h&k—1) + Wl 2 hl(]k—1)>
vEN (u)

* NIFTY Encoder ENC(-)= a stack of K NIFTY layers

I




NIFTY: Similarity Loss )

* Goal: Maximize similarity among embeddings of u, i, #i°

* Augmented graph: Either (1) edge/attribute perturbed graph or (2) counterfactual
graph with modification on the value of sensitive attribute

* Formulation
D (FC(zu), SG(zf}“g)) +D (Fc(zf}“g), SG(zu))
2

LS (ur ﬁaug) =

— D(:,"): Cosine distance

— 71?Y8: Counterpart of node u in the augmented graph

~ Z,,Z,, °: Representation of nodes u and #1298 learned by NIFTY encoder

— FC(+): A fully-connected layer to transform and align embeddings

— SG(-): Stop-grad operator, stop calculating the gradient with respect to its input

. L FC(z,) and z;, © are similar
* Intuition: Minimize L

FC(ziug) and z,, are similar




NIFTY: Total Loss @

* Total loss

L = (1 — A)Lc + A(]Eu [Ls(u» ﬁ)] + [E,, [Ls(ur ﬁs)])

— A: Regularization hyperparameter

— L.: Task-specific loss

e E.g., cross-entropy loss for node classification

— E,[Ls(u, ii)]: Similarity loss of original graph and the
edge/attribute perturbed graph

— E, [Ls(u, @®)]: Similarity loss of original graph and the
counterfactual graph

* Intuition: Jointly minimize
— The task-specific loss
— Distance among embeddings of u, &i and #°, for each node u




NIFTY Stability i)

* Given
— A K-layer NIFTY encoder ENC(:)

* Self-attention weight matrix at k-th layer Wc(lk)
— A binary-valued sensitive attribute s
— A node u with information vector b,
— Perturbed version i of node u with information vector by,

* NIFTY learns stable node embeo}l{ding
IENC() — ENC(@)]|,, < 1_[ HWCE") Hp Ib. — b,
k=1

* Remarks
— Lipschitz constant = Ik<=1 chgk) H
p

— Normalized chk) — small Lipschitz constant - stable ENC(u)

I




NIFTY Counterfactual Fairness ?@L

* Given
— A K-layer NIFTY encoder ENC(+)

« Self-attention weight matrix at k-th layer chk)
— A binary-valued sensitive attribute s
— A node u with its counterfactual version #%° by flipping the value of s

* NIFTY is counterfactually fair with the unfairness upper bounded as
follows

K
IENC(u) — ENC(@%)]|,, < 1_[ HWCE")Hp
k=1

 Remarks
— Upper bounded counterfactual unfairness (i.e., |[ENC(u) — ENC(%°)]|,)

— Normalized Wék) — counterfactually fair ENC(u)




NIFTY: Experiment Q@L

O

* Observation: NIFTY improves both fairness and stability

(a) German credit graph (b) Recidivism graph (c) Credit defaulter graph

»n 0 n 20 n 25 =
§ 2(5) § 15 é 20
S5 £ 10 E =5 H
(© ) ‘ (C 10
g4— 10 Y— _ Y—
c = Q E c S [P c s TET s
> > > -

20 50 60
> 5 > 40 é >0
x x 240
'S 10 T O 'S 30
S @ @ © 20 . ©20 [
35 B = == '"= 3
- - el =

7 GCN B NIFTY-GCN [ GIN NIFTY-GIN [ JK B NIFTY-JK
[ SAGE [ NIFTY-SAGE [ INFOMAX B NIFTY-INFOMAX
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Preliminary: Graph Convolutional Network (GCN)

oal

* Key Idea: Learn representations by aggregating information from the neighbors

* GCN: A stack of graph convolution layers

— The [-th graph convolution layer with o activation

* Example

Input

[1] Kipf, T. N., & Welling, M. (2016). Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017.

I

( JEN;U{i}

Node reﬁﬂ%%ewgﬁ

Q@g

Weight parameters

W >h(”>

RelLU

—
T = R
—/

%?g%i@%%‘%%eﬁdﬁ nd;

Hidden layer

Output




GCN Analysis: Error Rate Distribution @

* Observation: Low-degree nodes get higher error rate

* Question: Why should we concern about low-degree nodes?

04- Cora o Citeseer
9 o3 Qo4+
© o
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Pubmed Reddit
0.30 - e
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[1] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-Related Biases in Graph
E Convolutional Networks. CIKM 2020.
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Degree Distribution of Real-World Graphs @

* Observation: Degree distribution is long-tailed
— Low-degree nodes are the majority in the graph
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Why GCN Fails T

* Key steps in GCN training
— Learn node representations by message passing
— Train the model parameters by backpropagation

* Question #1: Does GCN fail because of the message
passing schema?

— Hypothesis #1: High-degree nodes have higher influence to
affect the training of GCN on other nodes

* Question #2: Does GCN fail during the backpropagation?

— Only information of labeled nodes can be backpropagated to its
neighbors

— Hypothesis #2: High-degree nodes are more likely to connect
with labeled nodes




Cause #1: Influence of High-Degree Nodes @

* Given
— A set of labeled nodes Vj peled
— An L-layer GCN with W) a5 the weight of L-th layer
— Two nodes i and k whose degrees are d; and d,
e X; and X as their corresponding input node features
. th) and hg) as the output embeddings learned by GCN

Influence of node i to node k
E[on{" /x| o \[d;d W ®
Influence of node i on GCN training

s= Y |[E[on®sox]|| «vaw®l Y Jd

kEV]abeled k€Vlabeled

Remark
— Fortwo nodes i and j, if d; > dj, then 5(i) > S(j)
— Node with higher degree will have higher influence on GCN training

Question: How to mitigate the impact of \/d;?




Cause #1: Influence of High-Degree Nodes ?@L

* Goal: Visualize the influence score S(-) for each node

* Observation: High-degree nodes have higher influence

Score
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Cause #2: Ratio of Labeled Neighbors @

Observation: High-degree nodes are more likely to have labeled neighbors
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Question: How to ensure that low-degree nodes receive enough training signals?
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SL-DSGCN: Framework E@L

e Strategy: Pre-training + fine-tuning

* Pre-training
— Mitigate the impact of node degree by degree-specific GCN

— Pre-train (1) an annotator through label propagation and (2) a Bayesian
neural network (BNN) with true labels for further use in fine-tuning stage
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Degree-Specific GCN S@L

* Degree-specific GCN: Two components

— A stack of degree-specific graph convolution layer for embedding
learning

— A fully-connected layer for node classification

e Given: The settings of GCN in the [-th layer and
— d;: The degree of node i
— N;: The neighborhood of node i

— chi,): The degree-specific weight w.r.t. degree of node j
* Degree-specific graph convolution layer
(I+1) _ l VATRO
JEN;U{i}
* Question: How to generate the degree-specific weight?

I




Degree-Specific Weight @

 Method: Generate degree-specific weight by a recurrent neural
network (RNN)

— Hypothesis: Existence of the complex relations among nodes with different
degrees

e Given: (1) ARNN and (2) W,El) = degree-specific weight of degree k at [-th layer

e We have

w,), = RNN (W)

RNN
Wo {WI — Uy — g _’W4>

Node Features

G g\ 2 &




SL-DSGCN: Framework E@L

e Strategy: Pre-training + fine-tuning

* Fine-tuning
— Provide pseudo training signals to low-degree nodes for self-supervision

Soft + True Labels (V%)

‘ 0 Student
QA
| ol
@
Teacher S
BNN
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Fine-Tuning with Self-Supervision E@L

e Student network: Degree-specific GCN

e Teacher network: BNN

— Provide additional softly-labeled set for self-supervision in student network
» Softly-labeled set: nodes labeled identically by the annotator and the BNN
— Exponentially decay the learning rate of labeled and softly-labeled nodes by
uncertainty score

* Higher uncertainty score - smaller learning rate
Soft + True Labels (V15)




SL-DSGCN: Experiment

* Observations
— Increased label rate implies higher classification accuracy

I

— Self-supervision provides useful information (i.e., high accuracy when the
label rate is low)

— SL-DSGCN outperforms all baseline methods

Dataset Cora Citeseer PubMed
Label Rate 0.5% 1% 2% 3% 4% 0.5% 1% 2% 3% 4% 0.03% 0.06% 0.09%
LP 29.05 38.63 53.26 70.31 7347 | 32.10 40.08 42.83 4532 49.01 | 39.01 48.7  56.73
ParWalks 37.01 4140 50.84 58.24 63.78 | 19.66 23.70 29.17 35.61 42.65 | 35.15 40.27 51.33
GCN 35.80 46.00 60.00 71.15 75.68 | 3450 4394 5442 56.22 58.71 | 47.97 56.68 63.26
DEMO-Net | 33.56 40.05 61.18 72.80 77.11 | 36.18 43.35 53.38 56.5 59.85 | 48.15 57.24 62.95
Self-Train 43.83 5245 6336 70.62 7737 | 4260 46.79 5292 5837 60.42 | 57.67 61.84 64.73
Co-Train 40.99 52.08 64.27 73.04 75.86 | 40.98 56.51 5240 57.86 62.83 | 53.15 59.63 65.50
Union 4586 53.59 64.86 73.28 77.41 | 4582 5438 5598 60.41 59.84 | 58.77 60.61 67.57
Interesction | 33.38 49.26 62.58 70.64 77.74 | 36.23 55.80 56.11 58.74 6296 | 59.70 60.21 63.97
M3S 50.28 58.74 68.04 75.09 7880 | 4896 53.25 5834 6195 63.03 | 5931 65.25 70.75
SL-DSGCN | 53.58 61.36 70.31 80.15 81.05 | 54.07 56.68 59.93 62.20 64.45 | 61.15 65.68 71.78

I




SL-DSGCN: Experiment E@L

* Observations: Degree-wise classification accuracy
— SL-DSGCN > DSGNN > GCN for all degrees

Cora . Citeseer
807 mmm GCN mm GCN
DSGNN 70 - DSGNN
> SL-DSGNN > SL-DSGNN
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Overview of Part Il

Other Fairness Definitions on Graphs

Counterfactual

RS

\_

Fairness on graph
embedding

l

Degree-related
Fairness

Fairness on graph
neural networks

Rawlsian Difference
Principle

e Fairness on graph
covering
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Preliminary: Graph Covering @

* Definitions
— A monitor: A node selected by the graph covering algorithm
— A covered node: A neighbor of the monitor
— Coverage: The total number of covered nodes

* Given: (1) Agraph G; (2) An integer budget I

* Find: A subset of I nodes in G to maximize the coverage

* Example

[1] Kratochv, J., Proskurowski, A., & Telle, J.. Complexity of Graph Covering Problems. NJC 1998.

I



Preliminary: Applications of Graph Covering Z‘IDLIJE

* Suicide prevention

— The monitors will identify the warning signs of suicide among
their covered nodes

SUICIDE

PREVENTION
LIFELINE

1-800-273- TALK(8255)

su|c1deprevent|onllfellne org

Question.
Persuade.
Refer.

RECOGNIZE SIGNS OF DISTRESS. PROVIDE HOPE. PROVIDE SUPPORT.

[1] Isaac, M., Elias, B., Katz, L. Y., Belik, S. L., Deane, F. P., Enns, M. W.,, ... & Swampy Cree Suicide Prevention Team. Gatekeeper Training
E as a Preventative Intervention for Suicide: A Systematic Review. CJP 2009.
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Preliminary: Applications of Graph Covering [el

* Disaster risk management

— The monitors will watch out their covered nodes in the case of
natural disasters

Crisis

\ impacts

Preparedness Response
to prepare for to save lives and
managing the | y Disaster X minimize
crisis y / \ \ immediate

Prevention Pre- Post- | Recovery
to minimize disaster disaster to restore
impacts of ' activities

future disasters and services

[1] Ab Ahmad, R., Amin, Z. A. M., Abdullah, C. H.,, & Ngajam, S. Z.. Public Awareness and Education Programme for Landslide
E Management and Evaluation Using a Social Research Approach to Determining “Acceptable Risk” and “Tolerable Risk” in Landslide Risk

144

Areas in Malaysia. WLF4 2017.




Robust Graph Covering @

* Key difference: Some monitors may fail
— If a monitor fails, its neighbors are not covered

* Given: (1) Agraph G; (2) Two integer budgets J and I (] < I)

* Find: A subset of I nodes in G to maximize the worst-case coverage when any |
nodes fail

* Example

[1] Tzoumas, V., Gatsis, K., Jadbabaie, A., & Pappas, G. J.. Resilient Monotone Submodular Function Maximization. CDC 2017.

I




Robust Graph Covering: Formulation ?@L

* Given
— A graph G = (V, €) with n nodes in total
— A binary vector x of length n, x[i] = 1 if the i-th node is selected as monitor
* The candidate binary vector X is chosen from a set X’

— A binary vector & of length n, [i] = 1 if the i-th node does not fail
* The candidate binary vector € is chosen from a set =

— A binary vector y of length n, yy¢[i] = 1 if the i-th node is covered
* Define: The coverage F;(x,§) = 1Tyx,§ where 1 with all 1s

e Mathematical formulation

e i Fox)

/ N\

Maximize its coverage Find the worst-case




Robust Graph Covering: Example @

* Monitor: Node in yellow
e Covered nodes: Neighbors of the nodes in both yellow and red
* Coverage: The number of nodes in green

* Goal: Maximize the number of green nodes

Do not fail:

gli] =1




Unfairness in Robust Covering ?@L

* Observation: Coverage by racial group varies in the network
— Existing algorithms are biased against the race of an individual

Networ . Percentage Covered by Racial Group
k White  Black Hisp.  Mixed  Other
SPY1 95 70 36 - 86 95
SPY2 117 78 - 42 76 67
SPY3 118 88 - 33 95 69
MFP1 165 96 77 69 73 28
MFP2 182 44 85 70 77 72

* Question: Can we ensure that different racial groups have similar
coverages?

[1] Tzoumas, V., Gatsis, K., Jadbabaie, A., & Pappas, G. J.. Resilient Monotone Submodular Function Maximization. CDC 2017.

I




Fairness in Robust Graph Covering @

* Fairness definition
— Rawlsian difference principle to maximize the utility of the worst-off groups

* Example

— Sensitive attribute: Race
— We need to maximize the utilities of Hispanic people in SPY2 and SPY3

NEe) Sive Percentage Covered by Racial Group
rk White Black Hisp. Mixed Other
SPY1 95 70 36 : 86 95
SPY2 117 78 : 42 76 67
SPY3 118 88 : 33 95 69

MFP1 165 96 77 69 73 28
MFP2 | 182 44 85 /70 77 72

[1] Rahmattalabi, A., Vayanos, P., Fulginiti, A., Rice, E., Wilder, B., Yadayv, A., & Tambe, M.. Exploring Algorithmic Fairness in Robust Graph
E Covering Problems. NeurlPS 2019.
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RCFair: Robust Graph Covering with Fairness Constraintj‘l[)cﬂl

* Given: The settings of robust graph covering and
— A set of sensitive attribute value C, e.g., C = {male, female} for gender
— The demographic groups N' =U,¢e N, defined by C

» Define: The group-specific coverage F; (X, §) = X;en. Yxeli]

Mathematical formulation

max min Fg(x,§) = Z Fg.(x,%)

XEX &EX 4
cE
s.t. Foc(x,8) =2 W[N] Vc€eCVEEE

where W € [0,1] is a constant

Intuition of fairness constraint
— At least W fraction of nodes from each group should be covered




RCFair: Example @

* Example
— 15 people with lighter skin, 3 people with darker skin
— W = 1/3, at least 1/3 of people in each group should be covered

Do not fail: Covered:
E[l] =1 YX,t[i] =1




RCFair: Hardness Q@@L

 Formulation
max min F;(x,%) = Z Fg.(x,%)

XEX EEE 4
ce
s.t. Fg o (X,8) =2W|N,| VceC,VvVEeE

* Challenges
— Discontinuity of F;(x, &)
— NP hard combinatorial problem

* Question: How to solve the problem?




RCFair: Problem Reformulation Q@@L

* Key idea: Reformulation on the objective function

Fox ) = max{ D ylil:yli) < ) xligljlvi e |
iEN €5,
— 0;: neighborhood of node i ]

* Equivalence of reformulation
—y|i] = 1if and only if node i is covered
—y|i] = 0 when no neighbor of node i is the non-‘fail’ monitor

* Question: How to reformulate the RCFair problem?




RCFair: Problem Reformulation Q@@L

 Problem reformulation
— Reformulation on both Fgc(x §) and F; .(x,¥)

LEN 166
s. t. Y = {y: Z yli] = W|N,|, Vi € ]\fc}
(EN,.

* Challenge: Max-min-max problem
— How to solve?




RCFair: K-Adaptability Approximation @

* Key steps
— Find K candidate solutions that
* Achieve highest coverage

e Satisfy the fairness constraint
* Without considering node failure

— Select the best solution within the candidates when considering
node failure

* Question: How to find K candidates efficiently?

 Solution: Derive the equivalence to Mixed-Interger Linear
Programming (MILP)
— Apply Bender’s Decomposition to solve the MILP

[1] Hanasusanto, G. A., Kuhn, D., & Wiesemann, W.. K-Adaptability in Two-Stage Robust Binary Programming. OPRE 2015.
E [2] Rahmattalabi, A., Vayanos, P., & Tambe, M.. A Robust Optimization Approach to Designing Near-Optimal Strategies for Constant-Sum

Monitoring Games. GameSec 2018. 155




RCFair: Price of Fairness ?@L

* Intuition: Incorporating fairness constraint comes at a price
— Lead to suboptimal solution to take care of the fairness

* Question: What is the cost of ensuring fairness?

e Definition: Price of Fairness (PoF)
— OPT(G, 1, ]): Optimal coverage without fairness constraint
— OPT™Ir(G I, ]): Optimal coverage with fairness constraint

) OPTfair(g’ ],])
PoF(G,1,]) = 1— OPT(G,1,])

* Intuition of PoF
— High PoF - few nodes are covered in fair solution




RCFair: Price of Fairness in Real Networks i

e Given: An arbitrary numbere > 0

* There exists
— A budget |

— Anetwork G = (IV,E) with V' > §+ 3
* Such that

PoF(G,1,0) > 1—¢

* Remark: RCFair without node failure can be arbitrarily
bad in real networks




RCFair: Price of Fairness in Random Graphs Z‘IDLIJE

 Random graph model: Stochastic Block Model (SBM)

OPTfair (g,I,])
OPT(4.1,))

Expected PoF: PoF(/,]) = 1 — E¢_spym [

e Conditions
— Certain assumption on the edge probability in SBM model
— Budget I = O(log|NV'])

Expected PoF in SBM
PoF(I,]) =1 —

N LceelNel + ] Xeeeviey d(c)

I = padeD —o(l)

— d(c) is a term related to |V,
— nisrelated to |C| and |V, | foreach c € C

Remark: Expected PoF in SBM model changes with the relative size
of each community determined by the sensitive attribute

I




RCFair: Experiment m

O

* Shaded area: Convex hull of the associated algorithm

e Observations

— Utility: The proposed method (K=3) have similar worst-case coverage with state-of-

the-art
— Fairness: The proposed method has the best worst-case coverage of the worst-off
group 0. .
< .
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Fairness on Dynamic Graphs @

* Motivation: Networks are dynamically changing over time

* Trivial solution: Re-run the fair graph mining algorithm
from scratch at each timestamp

* Limitations
— Time-consuming to re-train the mining model
— Fail to capture the dynamic information in ensuring fairness

* Questions
— How to efficiently update the mining results and ensure the
fairness at each timestamp?
— How to characterize the impact of dynamics over the bias
measure?




Fairness on Multi-Networks E@L

* Motivation: Real-world networks are often multi-sourced

Social Networks Transaction Networks

v flin VN A=

o P8 venmo PayPal CHASE
Oy &
~
@ VISA //// @mc

* Trivial solution: Flatten the multi-network to a single network and ensure
fairness on the flattened single network

* Limitations
— May introduce noise due to different distributions of different networks
— Fail to characterize the impact of cross-network links in ensuring fairness

* Question
— How to ensure the fairness of mining results across multiple networks?

— How to understand the implication of ensuring fairness on one network over the bias
of another network?




Multi-Resolution Fairness on Graphs @

* Motivation: Fairness on the entire graph may not imply the
fairness on a subgraph

 Example
Fair clustering in graph level Unfair clustering in subgraph level
/ \ W L Female is minority
A \ﬂ\/‘? in blue cluster

 Questions \/

— Can we ensure multi-resolution fairness on graph mining?
e The mining results are fair across multiple resolution (e.g., graph-level,
subgraph-level, node-level)?
— How to characterize the relationship between the hierarchical
structure of the graph and the multi-resolution fairness constraint?




Takeaways @

* Background knowledge and related problems

* Group fairness on graphs
— Ranking, clustering, embedding

* Individual fairness on graphs

— Laplacian regularization-based approach, ranking-based
approach

e Other fairness definitions on graphs

— Counterfactual fairness, degree-related fairness, Rawlsian
difference principle

* Future research directions
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