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ABSTRACT

Graph Convolutional Network (GCN) plays pivotal roles in many
real-world applications. Despite the successes of GCN deployment,
GCN often exhibits performance disparity with respect to node de-
grees, resulting in worse predictive accuracy for low-degree nodes.
We formulate the problem of mitigating the degree-related per-
formance disparity in GCN from the perspective of the Rawlsian
difference principle, which is originated from the theory of distribu-
tive justice. Mathematically, we aim to balance the utility between
low-degree nodes and high-degree nodes while minimizing the task-
specific loss. Specifically, we reveal the root cause of this degree-
related unfairness by analyzing the gradients of weight matrices
in GCN. Guided by the gradients of weight matrices, we further
propose a pre-processing method RawlsGCN-Graph and an in-
processing method RawlsGCN-Grad that achieves fair predictive
accuracy in low-degree nodes without modification on the GCN
architecture or introduction of additional parameters. Extensive
experiments on real-world graphs demonstrate the effectiveness of
our proposed RawlsGCNmethods in significantly reducing degree-
related bias while retaining comparable overall performance.
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1 INTRODUCTION

Graph structured data naturally appears in many real-world scenar-
ios, ranging from social network analysis [22], drug discovery [6],
financial fraud detection [32] to traffic prediction [8], recommenda-
tion [30] and many more. The success of deep learning on grid-like
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Figure 1: An illustrative example of the underrepresentation

of low-degree nodes in semi-supervised node classification.

A 2-layer GCN is trained on the Amazon-Photo dataset. Blue

dots refers to the average loss and average accuracy of a spe-

cific degree group (i.e., the set of nodeswith the same degree)

in the top and bottom figures, respectively. Black lines are

the regression lines of the blue dots in each figure. For vi-

sualization clarity, we only consider the degree groups that

contain more than five nodes.

data has inspired many graph neural networks in recent years.
Among them, Graph Convolutional Network (GCN) [18] is one
of the most fundamental and widely used ones, often achieving
superior performance in a variety of tasks and applications.

Despite their strong expressive power in node/graph represen-
tation learning, recent studies show that GCN tends to under-
represent nodes with low degrees [27], which could result in high
loss values and low predictive accuracy in many tasks and appli-
cations. As shown in Figure 1, it is clear that low-degree nodes
suffer from higher average loss and lower average accuracy in
semi-supervised node classification. Such a performance disparity
w.r.t. degrees is even more alarming, given that node degrees of
real-world graphs often follow a long-tailed power-law distribution
which means that a large fraction of nodes have low node degrees.
In other words, the overall performance of GCN might be primarily
beneficial to a few high-degree nodes (e.g., celebrities on a social
media platform) but biased against a large number of low-degree
nodes (e.g., grassroot users on the same social media platform).

To date, only a few efforts have been made to improve the per-
formance for low-degree nodes. For example, DEMO-Net [31] ran-
domly initializes degree-specific weight parameters in order to
preserve the neighborhood structure for low-degree nodes. SL-
DSGCN [27] introduces a degree-specific weight generator based
on recurrent neural network (RNN) and a semi-supervised learning
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module to provide pseudo labels for low-degree nodes. Recently,
Tail-GNN [20] proposes a novel neighborhood translation mecha-
nism to infer the missing local context information of low-degree
nodes. However, the fundamental cause of degree-related unfair-
ness in GCN largely remains unknown, which in turn prevents us
frommitigating such unfairness from its root. Furthermore, existing
works introduce either additional degree-specific weight parame-
ters [27, 31] or additional operation on node representations (e.g.,
forged node generator, neighborhood translation) [20], which sig-
nificantly increase the computational cost in both time and space
and thus hinder the scalability of these models.

In order to tackle these limitations, we introduce the Rawlsian
difference principle [25] to mitigate degree-related unfairness in
GCN. As one of the earliest definitions of fairness from the theory
of distributive justice [25], the Rawlsian difference principle aims
to maximize the welfare of the least fortunate group and achieves
stability when the worst-off group seeks to preserve its status quo.
In the context of GCN, it requires a GCN model to have balanced
performance among the groups of nodes with the same degree
when the Rawlsian difference principle is in its stability. Given its
essential role in training the GCN through backpropagation, we
focus our analysis on the gradients of weight matrices of GCN.
In particular, we establish the mathematical equivalence between
the gradient of the weight matrix in a graph convolution layer
and a weighted summation over the influence matrix of each node,
weighted by its corresponding node degree in the input of GCN.
This analysis not only reveals the root cause of degree-related
unfairness in GCN, but also naturally leads to two new methods to
mitigate the performance disparity with respect to node degrees,
including (1) a pre-processing method named RawlsGCN-Graph
that precomputes a doubly stochastic normalization of the input
adjacency matrix to train the GCN; and (2) an in-processing method
named RawlsGCN-Grad that normalizes the gradient so that each
node will have an equal importance in computing the gradients of
weight matrices.

The main contributions of this paper are summarized as follows.
• Problem. To our best knowledge, we are the first to in-
troduce the Rawlsian difference principle to GCN so as to
mitigate the degree-related unfairness.

• Analysis. We reveal the mathematical root cause of the
degree-related unfairness in GCN.

• Algorithms.We propose two easy-to-implement methods
to mitigate the degree bias, with no need to change the ex-
isting GCN architecture or introduce additional parameters.

• Evaluations.We perform extensive empirical evaluations
on real-world graphs, which demonstrate that our proposed
methods (1) achieve comparable accuracy with the vanilla
GCN, (2) significantly decrease the degree bias, and (3) take
almost the same training time as the vanilla GCN. Surpris-
ingly, by mitigating the bias of low-degree nodes, our meth-
ods can sometimes improve the overall classification accu-
racy by a significant margin.

The rest of this paper is organized as follows. Section 2 formally
defines the problem of enforcing the Rawlsian difference principle
on GCN. Our mathematical analysis and the proposed methods
are introduced in Section 3. Section 4 presents the experimental

settings and evaluations. We review the related work in Section 5.
Finally, Section 6 concludes the paper.

2 PROBLEM DEFINITION

In this section, we first introduce the main symbols used through-
out the paper in Table 1. Then we present a brief review on the
Graph Convonlutional Network (GCN) and the Rawlsian difference
principle. Finally, we formally define the problem of enforcing the
Rawlsian difference principle on GCN.

Table 1: Table of symbols.

Symbols Definitions and Descriptions

A a matrix
A𝑇 transpose of matrix A
u a vector
G a graph
V a set of nodes
𝐽 (·) objective function
𝜎 (·) activation function
X node feature matrix

H(𝑙) node representations at 𝑙-th layer
W(𝑙) weight matrix at 𝑙-th layer
𝐿 number of graph convolution layers
𝑑𝑙 hidden dimension of 𝑙-th layer

deg(𝑢) degree of node 𝑢

Unless otherwise specified, we denote matrices with bold upper-
case letters (i.e., A), vectors with bold lower-case letters (i.e., x) and
scalars with italic lower-case letters (i.e., 𝑐). We use rules similar to
NumPy in Python for matrix and vector indexing.A[𝑖, 𝑗] represents
the entry of matrix A at the 𝑖-th row and the 𝑗-th column. A[𝑖, :]
and A[:, 𝑗] represent the 𝑖-th row and the 𝑗-th column of matrix A,
respectively. We use superscript 𝑇 to represent the transpose of a
matrix, i.e., A𝑇 is the transpose of matrix A.

2.1 Preliminaries

A – Graph Convolutional Network.We denote a graph as G =

{VG,A,X} where VG is the set of 𝑛 nodes in the graph (i.e., 𝑛 =

|VG |), A is the 𝑛 × 𝑛 adjacency matrix and X ∈ R𝑛×𝑑0 is the node
feature matrix.

GCN is a typical graph neural network model that contains a
stack of graph convolution layers. Based on the first-order Cheby-
shev polynomial, the graph convolution layer learns the latent
node representations through the message-passing mechanism in
two major steps. First, each node in the graph aggregates its own
representation with the representations of its one-hop neighbors.
Then, the aggregated representations are transformed through a
fully-connected layer. Mathematically, for the 𝑙-th graph convolu-
tion layer, denoting its output node representations as H(𝑙) (we
assume H(0) = X for notation consistency), it computes the latent
representation with H(𝑙) = 𝜎 (ÂH(𝑙−1)W(𝑙) ),∀𝑙 ∈ {1, . . . , 𝐿} where
𝜎 (·) is the nonlinear activation function, W(𝑙) ∈ R𝑑𝑙−1×𝑑𝑙 is the
weight matrix, and Â = D̃− 1

2 (A + I)D̃− 1
2 is the renormalized graph

Laplacian with D̃ being the diagonal degree matrix of A + I.
B – The Rawlsian Difference Principle. The Rawlsian differ-
ence principle is one of the major aspects of the equality principle
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in the theory of distributive justice by John Rawls [25]. The differ-
ence principle achieves equality by maximizing the welfare of the
worst-off groups. When the Rawlsian difference principle is in its
stability, the performance of all groups are balanced since there
is no worst-off group whose welfare should be maximized and all
groups preserve their status quo. For a machine learning model
that predicts task-specific labels for each data sample, the welfare
is often defined as the predictive accuracy of the model [13, 24].
We denote (1) D = {D1, . . . ,Dℎ} as a dataset that can be divided
into ℎ different groups, (2) 𝐽 (D,Y, 𝜃 ) as the task-specific loss func-
tion that the model with parameters 𝜃 aims to minimize where
Y is the model output and (3) 𝑈 (·, 𝜃 ) as the utility function that
measures the predictive accuracy over a set of samples using the
model with parameters 𝜃 . The Rawlsian difference principle can be
mathematically formulated as

min𝜃 Var({𝑈 (D𝑖 , 𝜃 ) |𝑖 = 1, . . . , ℎ})
s.t. 𝜃 = argmin 𝐽 (D,Y, 𝜃 ) (1)

where Var({𝑈 (D𝑖 , 𝜃 ) |𝑖 = 1, . . . , ℎ}) calculates the variance of the
utilities of the groups {D1, . . . ,Dℎ}.
2.2 Problem Definition

Despite superior performance of GCN in many tasks, GCN is often
biased towards benefiting high-degree nodes. Following the overar-
ching difference principle by John Rawls, we view the inconsistent
predictive accuracy of GCN for high-degree and low-degree nodes
as a distributive justice problem. However, directly enforcing the
Rawlsian difference principle (Equation (1)) is nontrivial for two
major reasons. First (C1), in many real-world applications, there
could be multiple utility measures of interest. For example, in a clas-
sification task, an algorithm administrator might be interested in
different measures like the classification accuracy, precision, recall
and F1 score. Even if only one utility measure is considered, it is
likely that the measure itself is non-differentiable, which conflicts
with the end-to-end training paradigm of GCN. Second (C2), it is
hard to decide whether a node is low-degree or high-degree by a
clear threshold of degree value. A bad choice of the threshold value
could even introduce more bias in calculating the average utilities.
For example, if we set the threshold to be too large, the group of low-
degree nodes might contain relatively high-degree nodes on which
GCN achieves high utility. Then its average utility will increase
by including these relatively high-degree nodes. In this case, even
when the GCN balances the utilities between the groups of low-
degree nodes and high-degree nodes, many nodes with relatively
low degrees still suffer from the issue of low predictive accuracy.

To address the first challenge (C1), we replace the utility function
𝑈 with the loss function 𝐽 as a proxy measure of predictive accuracy.
The intuition lies in the design of the end-to-end training paradigm
of GCN, in which we minimize the loss function in order to max-
imize the predictive accuracy of GCN. Thus, we aim to achieve a
balanced loss in the stability of the Rawlsian difference principle.
As for the second challenge (C2), instead of setting a hard threshold
to split the groups of low-degree nodes and high-degree nodes, we
split the node setV = ∪degmax

𝑖=1 V𝑖 to a maximum of degmax degree
groups whereV𝑖 refers to the set of nodes whose degrees are equal
to 𝑖 . With that, we formally define the problem of enforcing the
Rawlsian difference principle on GCN as follows.

Problem 1. Enforcing the Rawlsian Difference Princple on GCN

Input: (1) an undirected graph G = {VG,A,X}; (2) an 𝐿-layer
GCN with the set of weights 𝜃 ; (3) a task-specific loss function
𝐽 (G,Y, 𝜃 ) where Y is the model output.

Output: a well-trained GCN that (1) minimizes the task specific
loss 𝐽 (G,Y, 𝜃 ) given the input graph G and (2) achieves a balanced
loss for all degree groupsV𝑖 (𝑖 = 1, . . . , degmax).

3 METHODOLOGY

In this section, we propose a family of algorithms, namely Rawls-
GCN, to enforce the Rawlsian difference principle on GCN. We first
present analysis on the source of degree-related unfairness, which
turns out to be rooted in the gradient of weight parameters in the
GCN. Then we discuss how to compute doubly stochastic matrix
which is the key to mitigate the degree-related unfairness. Based on
that, we present a pre-processing method (RawlsGCN-Graph) and
an in-processing method (RawlsGCN-Grad) to solve Problem 1.
3.1 Source of Unfairness

The key to solve Problem 1 is to understand why the loss of a GCN
varies among nodes with different degrees after training. Since the
key component in training a GCN is the gradient matrix of the
weight parameters with respect to the loss function, we seek to
understand the root cause of such degree-related unfairness by
analyzing it mathematically. In this section, our detailed analysis
(Theorem 1) reveals the following fact: in a graph convolution layer,
the gradient matrix 𝜕𝐽

𝜕W
1 of the loss function 𝐽 with respect to the

weight parameter W is equivalent to a weighted summation of
the influence matrix of each node, weighted by its degree in input
adjacency matrix Â.

Theorem 1. Suppose we have an input graph G = {VG,A,X},
the renormalized graph Laplacian Â = D̃− 1

2 (A + I)D̃− 1
2 , a nonlinear

activation function 𝜎 () and an 𝐿-layer GCN that minimizes a task-
specific loss function 𝐽 . For any 𝑙-th hidden graph convolution (∀𝑙 ∈
{1, . . . , 𝐿}) layer, the gradient of the loss function 𝐽 with respect to
the weight parameterW(𝑙) is a linear combination of the influence of
each node weighted by its degree in the renormalized graph Laplacian.

𝜕𝐽

𝜕W(𝑙) =

𝑛∑
𝑗=1

degÂ ( 𝑗)I
(row)
𝑗

=

𝑛∑
𝑖=1

degÂ (𝑖)I
(col)
𝑖

(2)

where degÂ (𝑖) is the degree of node 𝑖 in the renormalized graph Lapla-

cian Â, I(row)
𝑗

=
(
H(𝑙−1) [ 𝑗, :]

)𝑇
E𝑖∼𝑝N̂ ( 𝑗 )

[
𝜕𝐽

𝜕E(𝑙 ) [𝑖,:]

]
is the row-wise in-

fluence matrix of node 𝑗 , I(col)
𝑖

=

(
E𝑗∼𝑝N̂ (𝑖 )

[
H(𝑙−1) [ 𝑗, :]

] )𝑇 𝜕𝐽

𝜕E(𝑙 ) [𝑖,:]

is the column-wise influence matrix of node 𝑖 ,H(𝑙−1) is the input node
embeddings of the hidden layer and E(𝑙) = ÂH(𝑙−1)W(𝑙) is the node
embeddings before the nonlinear activation.

Proof. To compute the derivative of the objective function 𝐽
with respect to the weightW(𝑙) in the 𝑙-th graph convolution layer,
by the graph convolution H(𝑙) = 𝜎 (ÂH(𝑙−1)W(𝑙) ) and the chain
rule of matrix derivative, we have

𝜕𝐽

𝜕W(𝑙) [𝑖, 𝑗]
=

𝑛∑
𝑎=1

𝑑𝑙∑
𝑏=1

𝜕𝐽

𝜕H(𝑙) [𝑎, 𝑏]
𝜕H(𝑙) [𝑎, 𝑏]
𝜕W(𝑙) [𝑖, 𝑗]

(3)

1We use 𝐽 to represent 𝐽 (G,Y, 𝜃 ) for notation simplicity.
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where𝑑𝑙 is the number of columns inH(𝑙) . To compute Equation (3),
a key term to compute is 𝜕H

(𝑙 ) [𝑎,𝑏 ]
𝜕W(𝑙 ) [𝑖, 𝑗 ] . Denoting 𝜎

′ as the derivative
of the activation function 𝜎 , by the graph convolution, we get
𝜕H(𝑙) [𝑎, 𝑏]
𝜕W(𝑙) [𝑖, 𝑗]

=
𝜕𝜎

(
(ÂH(𝑙−1)W(𝑙) ) [𝑎, 𝑏]

)
𝜕(ÂH(𝑙−1)W(𝑙) ) [𝑎, 𝑏]

𝜕(ÂH(𝑙−1)W(𝑙) ) [𝑎, 𝑏]
𝜕W(𝑙) [𝑖, 𝑗]

= 𝜎 ′
(
(ÂH(𝑙−1)W(𝑙) ) [𝑎, 𝑏]

)
(ÂH(𝑙−1) ) [𝑎, 𝑖]1[𝑏 == 𝑗]

(4)Combining Equations (3) and (4), we have
𝜕𝐽

𝜕W(𝑙) [𝑖, 𝑗]
=
∑
𝑎

(
ÂH(𝑙−1) )𝑇 [𝑖, 𝑎] ( 𝜕𝐽

𝜕H(𝑙) ◦ 𝜎 ′(ÂH(𝑙−1)W(𝑙) )
)
[𝑎, 𝑗]

=
(
ÂH(𝑙−1) )𝑇 [𝑖, :] ( 𝜕𝐽

𝜕H(𝑙) ◦ 𝜎 ′(ÂH(𝑙−1)W(𝑙) )
)
[:, 𝑗]

(5)
where ◦ represents the element-wise product. Writing Equation (5)
into matrix form, we have

𝜕𝐽

𝜕W(𝑙) = (H(𝑙−1) )𝑇 Â𝑇
( 𝜕𝐽

𝜕H(𝑙) ◦ 𝜎 ′(ÂH(𝑙−1)W(𝑙) )
)

(6)

Let E(𝑙) = ÂH(𝑙−1)W(𝑙) denote the node embeddings before the
nonlinear activation, i.e., H(𝑙) = 𝜎 (E(𝑙) ). By the chain rule of ma-
trix derivative, we have 𝜕𝐽

𝜕E(𝑙 ) =
𝜕𝐽

𝜕H(𝑙 ) ◦ 𝜎 ′(ÂH(𝑙−1)W(𝑙) ). Then
Equation (6) can be written as2

𝜕𝐽

𝜕W(𝑙) = (H(𝑙−1) )𝑇 Â𝑇 𝜕𝐽

𝜕E(𝑙)
(7)

To analyze the influence of each node on the gradient 𝜕𝐽

𝜕W(𝑙 ) , we
factorize Equation (7) as follows.

𝜕𝐽

𝜕W(𝑙) =

𝑛∑
𝑖=1

𝑛∑
𝑗=1

Â𝑇 [𝑖, 𝑗] (H(𝑙−1) [𝑖, :])𝑇 𝜕𝐽

𝜕E(𝑙) [ 𝑗, :]
(8)

Denoting the distribution 𝑝N̂ (𝑖) over the neighborhood of node 𝑖 in
the renormalized graph Laplacian Â such that 𝑝N̂ (𝑖) ( 𝑗) ∝ Â[𝑖, 𝑗] =
Â[ 𝑗, 𝑖],∀𝑗 ∼ 𝑝N̂ (𝑖) , we can rewrite Equation (8) as

𝜕𝐽

𝜕W(𝑙) =

𝑛∑
𝑗=1

degÂ ( 𝑗)
(
H(𝑙−1) [ 𝑗, :]

)𝑇
E𝑖∼𝑝N̂ ( 𝑗 )

[
𝜕𝐽

𝜕E(𝑙) [𝑖, :]

]
=

𝑛∑
𝑖=1

degÂ (𝑖)
(
E𝑗∼𝑝N̂ (𝑖 )

[
H(𝑙−1) [ 𝑗, :]

] )𝑇 𝜕𝐽

𝜕E(𝑙) [𝑖, :]

(9)

where degÂ (𝑖) =
∑𝑛
𝑖=1 Â[𝑖, 𝑗] = ∑𝑛

𝑖=1 Â[ 𝑗, 𝑖] is the degree of node
𝑖 in the renormalized graph Laplacian Â. We define the row-wise
influence matrix I(row)

𝑗
of a node 𝑗 and the column-wise influence

matrix I(col)
𝑖

of a node 𝑖 as follows.

I(row)
𝑗

=
(
H[ 𝑗, :]

)𝑇
E𝑖∼𝑝N̂ ( 𝑗 )

[
𝜕𝐽

𝜕E(𝑙) [𝑖, :]

]
I(col)
𝑖

=

(
E𝑗∼𝑝N̂ (𝑖 )

[
H[ 𝑗, :]

] )𝑇 𝜕𝐽

𝜕E(𝑙) [𝑖, :]

(10)

Then Equation (9) can be written as the weighted summation over
the (row-/column-wise) influence matrix of each node, weighted by
its corresponding degree in the renormalized graph Laplacian Â.

𝜕𝐽

𝜕W(𝑙) =

𝑛∑
𝑗=1

degÂ ( 𝑗)I
(row)
𝑗

=

𝑛∑
𝑖=1

degÂ (𝑖)I
(col)
𝑖

(11)

□

2A simplified result on linear GCNwithout nonlinear activation is shown in [11], while
our result (Equation (7)) generalizes to GCN with arbitrary differentiable nonlinear
activation function.
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Figure 2: Node degrees in the original adjacencymatrixA (x-

axis) vs. the correspondingnode degrees in the renormalized

graph Laplacian Â (y-axis).

Remark: By Theorem 1, the gradient 𝜕𝐽

𝜕W(𝑙 ) is essentially equiva-
lent to a linear combination of the influence matrix of each node in
the graph, with the corresponding node degree degÂ in the renor-
malized graph Laplacian Â serving as the importance of the in-
fluence matrix. As a consequence, as long as the node degrees
are not equal to a constant (e.g., 1), the gradient 𝜕𝐽

𝜕W(𝑙 ) will favor
the nodes with higher degrees in Â. It is noteworthy that, even if
Â = D̃− 1

2 (A + I)D̃− 1
2 is symmetrically normalized, such normaliza-

tion only guarantees the largest eigenvalue of Â to be 1, whereas
the degrees in Â are not constant as shown in Figure 2. From the
figure, we have two key observations: (1) the node degrees in Â
are not equal among all nodes (𝑦-axis); and (2) there is a positive
correlation between a node degree in A (𝑥-axis) and a node degree
in Â (𝑦-axis). Putting everything together, it means that the higher
the node degree in A, the more importance it has on the gradient of
the weight matrix. This shows exactly why the vanilla GCN favors
high-degree nodes while being biased against low-degree nodes.
3.2 Doubly Stochastic Matrix Computation

In order to mitigate the node degree-related unfairness, the key idea
is to normalize the importance of influence matrices (i.e., the node
degrees in Â) to 1 in Equation (11), such that each node will have
equal importance in updating the weight parameters. To achieve
that, Equation (11) naturally requires that the rows and columns of
Â sums up to 1, which is a doubly stochastic matrix.

Computing the doubly stochastic matrix is nontrivial. To achieve
that, we adopt the Sinkhorn-Knopp algorithm, which is an itera-
tive algorithm to balance a matrix into doubly stochastic form [26].
Mathematically speaking, given a non-negative 𝑛 ×𝑛 square matrix
A, it aims to find two 𝑛 × 𝑛 diagonal matrices D1 and D2 such that
D1AD2 is doubly stochastic. The intuition of Sinkhorn-Knopp algo-
rithm is to learn a sequence of matrices whose rows and columns
are alternatively normalized. Mathematically, defining r0 = c0 = 1
to be the column vectors of all 1s and x−1 to be the operator for
element-wise reciprocal, i.e., x−1 [𝑖] = 1/x[𝑖], the Sinkhorn-Knopp
algorithm alternatively calculates the following equations.

c𝑘+1 = (A𝑇 r𝑘 )−1 r𝑘+1 = (Ac𝑘+1)−1 (12)
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If the algorithm converges after 𝐾 iterations, the doubly stochastic
form of A is P = diag(r𝐾 )Adiag(c𝐾 ) where diag(r𝐾 ) and diag(c𝐾 )
diagonalize the column vectors r𝐾 and c𝐾 into diagonal matrices.
The time and space complexities of computing the doubly stochastic
matrix P is linear with respect to the size of input matrix A.

Lemma 1. (Time and space complexities) Let A be an 𝑛 × 𝑛 non-
negative matrix with𝑚 nonzero elements, the time complexity of the
Sinkhorn-Knopp algorithm is𝑂 (𝐾 (𝑚 +𝑛)) where 𝐾 is the number of
iterations to convergence. It takes an additional 𝑂 (𝑚 + 𝑛) space.

Proof. In the 𝑘-th iteration (where 1 ≤ 𝑘 ≤ 𝐾 ) of the Sinkhorn-
Knopp algorithm, it takes 𝑂 (𝑚) time to compute A𝑇 r𝑘 and Ac𝑘+1.
Then it takes𝑂 (𝑛) time for element-wise reciprocal. Thus, the time
complexity of an iteration is𝑂 (𝑚 + 𝑛). Since the algorithm takes 𝐾
iterations to converge, the overall time complexity is 𝑂 (𝐾 (𝑚 + 𝑛)).
Regarding the space complexity, it takes an additional 𝑂 (𝑛) space
to store vectors c𝑘 and r𝑘 in the 𝑘-th iteration and an additional
𝑂 (𝑚) time to store the resulting doubly stochastic form of matrix
A. Thus, the overall space complexity is 𝑂 (𝑚 + 𝑛). □

Next, we prove the convergence of the Sinkhorn-Knopp algo-
rithm in our setting. To this end, we first present the definition of
the diagonal of a matrix corresponding to a column permutation.

Definition 1. (Diagonal of a matrix corresponding to a column
permutation [26]) Let A be an 𝑛 ×𝑛 square matrix and 𝛿 be a permu-
tation over the set {1, . . . , 𝑛}.

(1) The sequence of elementsA[1, 𝛿 (1)],A[2, 𝛿 (2)], . . . ,A[𝑛, 𝛿 (𝑛)]
is called the diagonal of A corresponding to 𝛿 .

(2) If 𝛿 is the identity, the diagonal is the main diagonal of A.
(3) If A[𝑖, 𝛿 (𝑖)] > 0,∀𝑖 , the diagonal is a positive diagonal.

We then provide the formal definition of the support of a matrix
in Definition 2.

Definition 2. (Support of a non-negative square matrix [26]) Let
A be an 𝑛 × 𝑛 non-negative matrix, A is said to have support if A
contains a positive diagonal. A is said to have total support if A ≠ 0
and if every positive element of A lies on a positive diagonal, where 0
is the zero matrix of the same size as A.

By Definitions 1 and 2, Sinkhorn and Knopp [26] proved the
following result.

Theorem 2. (Sinkhorn-Knopp theorem [26]) If A is an 𝑛 × 𝑛 non-
negative matrix, the Sinkhorn-Knopp algorithm converges and finds
the unique doubly stochastic matrix of the form D1AD2 if and only
if A has total support, where D1 and D2 are diagonal matrices.

Proof. Omitted. □

Based on Theorem 2, we give Lemma 2 which says that the
Sinkhorn-Knopp algorithm always converges in our setting and
finds the doubly stochastic matrix with respect to the renormalized
graph Laplacian Â.

Lemma 2. Given an adjacency matrix A, if Â = D̃− 1
2 (A + I)D̃− 1

2

with D̃ as the degree matrix of A + I, the Sinkhorn-Knopp algorithm
always converges to find the unique doubly stochastic form of Â.

Proof. The key idea is to prove that Â has total support. Let
degÂ (𝑖) be the degree of node 𝑖 in Â. It is trivial that Â has support

because its main diagonal is positive. In order to prove that Â has
total support, for any undirected edge A[𝑖, 𝑗], we define a column
permutation 𝛿𝑖 𝑗 as a permutation that satisfies (1) 𝛿𝑖 𝑗 (𝑖) = 𝑗 ; (2)
𝛿𝑖 𝑗 ( 𝑗) = 𝑖 and (3) 𝛿𝑖 𝑗 (𝑘) = 𝑘,∀𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 . Then, for any
edge (𝑖, 𝑗), by applying the permutation 𝛿𝑖 𝑗 , the diagonal of Â
corresponding to 𝛿𝑖 𝑗 is a positive diagonal due to the non-negativity
of Â. Thus, Â has total support because all positive elements of Â
lie on positive diagonals, which completes the proof. □

Lemma 2 guarantees that we can always calculate the doubly
stochastic form of Â using the Sinkhorn-Knopp algorithm, in order
to ensure the equal importance of node influence in calculating the
gradient of the weight parameter 𝜕𝐽

𝜕W(𝑙 ) in the 𝑙-th layer.

3.3 RawlsGCN Algorithms

If the gradient 𝜕𝐽

𝜕W(𝑙 ) is computed using the doubly stochastic matrix
ÂDS with respect to the renormalized graph Laplacian Â, it is fair
with respect to node degrees because all nodes will have equal
importance in determining the gradient, i.e., their degrees in ÂDS
are all equal to 1. Thus, a fair gradient with respect to node degrees
can be calculated using Equation (7) as follows.

𝜕𝐽

𝜕W(𝑙) fair
= (H(𝑙−1) )𝑇 Â𝑇DS

𝜕𝐽

𝜕E(𝑙)
(13)

where E(𝑙) = ÂH(𝑙−1)W(𝑙) .
Observing the computation of fair gradient in Equation (13), it

naturally leads to two methods to mitigate degree-related unfair-
ness, including (1) a pre-processing method named RawlsGCN-
Graph which utilizes the doubly stochastic matrix ÂDS as the input
adjacency matrix, and (2) an in-processing method named Rawls-
GCN-Grad that normalizes the gradient in GCN with Equation (13).
Method #1: Pre-processing with RawlsGCN-Graph. If we are
allowed to modify the input of the GCNwhereas the model itself are
fixed, we can precompute the input renormalized graph Laplacian
Â into its doubly stochastic form ÂDS and feed ÂDS as the input
of the GCN. With that, the gradient computed using Equation 7
is equivalent to Equation (13). As a consequence, the Rawlsian
difference principle is naturally ensured since all nodes in ÂDS have
the same degree. Given a graph G = {V,A,X} and an 𝐿-layer GCN,
RawlsGCN-Graph adopts the following 3-step strategy.

1. Precompute Â = D̃− 1
2 (A + I)D̃− 1

2 where D̃ is the diagonal
degree matrix of A + I.

2. Precompute ÂDS by applying the Sinkhorn-Knopp algorithm
on Â.

3. Input ÂDS and X to the GCN for model training.
Method #2: In-processing with RawlsGCN-Grad. If we have
access to the model or the model parameters while the input data is
fixed, we can precompute the doubly stochastic matrix ÂDS and use
ÂDS to compute the fair gradient by Equation (13). Then training
GCN with the fair gradient ensures the Rawlsian difference princi-
ple because nodes of different degrees share the same importance in
determining the gradient for gradient descent-based optimization.
Given a graph G = {V,A,X} and an 𝐿-layer GCN, the general
workflow of RawlsGCN-Grad is as follows.

1. Precompute Â = D̃− 1
2 (A + I)D̃− 1

2 where D̃ is the diagonal
degree matrix of A + I.
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2. Precompute ÂDS by applying the Sinkhorn-Knopp algorithm
on Â.

3. Input Â and X to the GCN for model training.
4. For each graph convolution layer 𝑙 ∈ {1, . . . , 𝐿}, compute

the fair gradient 𝜕𝐽

𝜕W(𝑙 ) fair for each weight matrixW(𝑙) using
Equation (13).

5. Update the model parametersW(𝑙) using the fair gradient
𝜕𝐽

𝜕W(𝑙 ) fair.
6. Repeat steps 4-5 until the model converges.
An advantage of both RawlsGCN-Graph and RawlsGCN-Grad

is that no additional time complexity will be incurred during the
learning process of GCN, since we can precompute and store ÂDS.
For RawlsGCN-Graph, ÂDS has the same number of nonzero el-
ements as Â because computing ÂDS is essentially rescaling each
nonzero element in Â. Thus, there is no additional time cost during
the graph convolution operation with ÂDS. For RawlsGCN-Grad,
computing the fair gradient with Equation (13) enjoys the same
time complexity as the vanilla gradient computation (Equation (7))
because ÂDS and Â has exactly the same number of nonzero en-
tries. Thus, there is no additional time cost in big-O notation in
optimizing the GCN parameters. In terms of the additional costs
in computing ÂDS, it bears a linear time and space complexities
with respect to the number of nodes and the number of edges in
the graph as stated in Lemma 1.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed RawlsGCN methods
in the task of semi-supervised node classification to answer the
following questions:
Q1. How accurate are the RawlsGCN methods in node classifi-

cation?
Q2. How effective are the RawlsGCN methods in debiasing?
Q3. How efficient are the RawlsGCNmethods in time and space?

4.1 Experimental Settings

Datasets. We utilize six publicly available real-world networks
for evaluation. Their statistics, including the number of nodes, the
number of edges, number of node features, number of classes and
the median of node degrees (Median Deg.), are summarized in
Table 2. For semi-supervised node classification, we use a fixed
random seed to generate the training/validation/test sets for each
network. The training set contains 20 nodes per class. The validation
set and the test set contain 500 nodes and 1000 nodes, respectively.

Table 2: Statistics of datasets.

Name Nodes Edges Features Classes Median Deg.

Cora-ML 2,995 16,316 2,879 7 3
Citeseer 3,327 9,104 3,703 6 2

Coauthor-CS 18,333 163,788 6,805 15 6
Coauthor-Physics 34,493 495,924 8,415 5 10
Amazon-Computers 13,752 491,722 767 10 22

Amazon-Photo 7,650 238,162 745 8 22
Baseline Methods.We compare the proposed RawlsGCN meth-
ods with several baseline methods, including GCN [18], DEMO-
Net [31], DSGCN [27], Tail-GNN [20], Adversarial Fair GCN (Ad-
vFair) [3] and REDRESS [9]. Detailed description of each baseline
method is provided in Appendix3.
3We use the official PyTorch implementation of GCN, Tail-GNN and REDRESS for
experimental evaluation. For DEMO-Net, we implement our own PyTorch version and

Metrics.Weuse cross entropy as the loss function in semi-supervised
node classification. To answerQ1, we evaluate the accuracy of node
classification (i.e., Acc. in Table 3). For metrics in Q2, we define
the bias w.r.t. the Rawlsian difference principle as the variance of
degree-specific average cross entropy (i.e., AvgCE) to be consistent
with the definition of Problem 1. Mathematically, it is defined as

AvgCE(𝑘) = E[{CE(𝑢),∀ node 𝑢 such that deg(𝑢) = 𝑘}]
Bias = Var({AvgCE(𝑘),∀ node degree 𝑘}) (14)

where CE(𝑢) and deg(𝑢) are the cross entropy and the degree of
node 𝑢, respectively. To measure the efficiency (Q3), we count the
number of learnable parameters (# Param. in Table 4), GPU memory
usage in MB (Memory in Table 4) and training time in seconds.
Parameter Settings. For all methods, we use a 2-layer GCN as the
backbone model with the hidden dimension as 64. We evaluate all
methods on 5 different runs and report their average performance.
We train RawlsGCNmodels for 100 epochs without early stopping.
For the purpose of the reproducibility, the random seeds for these
5 runs are varied from 0 to 4. We use the Adam optimizer to train
all methods. Unless otherwise specified, the default weight decay
of the optimizer is set to 0.0005. The detailed parameter settings
(including learning rate, training epochs of baseline methods) are
included in Appendix.
Machine Configuration and Reproducibility. All datasets are
publicly available. All codes are programmed in Python 3.8.5 and
PyTorch 1.9.0. All experiments are performed on a Linux server
with 96 Intel Xeon Gold 6240R CPUs at 2.40 GHz and 4 Nvidia Tesla
V100 SXM2 GPUs with 32 GB memory. We will release the source
code of the proposed methods upon the publication of the paper.

4.2 Main Results

Effectiveness results. The evaluation results are shown in Table 3.
We do not report the results of Tail-GNN for the Coauthor-Physics
dataset due to the out-of-memory (OOM) error. From the table, we
can see that our proposed RawlsGCN-Graph and RawlsGCN-Grad
are the only two methods that can consistently reduce the bias
across all datasets. Though REDRESS reduces bias more than the
proposed methods on the Coauthor-CS dataset, it bears a much
higher bias than our proposed methods in other datasets. Surpris-
ingly, on the Amazon-Computers and Amazon-Photo datasets, our
proposed RawlsGCN-Graph and RawlsGCN-Grad significantly
improve the overall classification accuracy by mitigating the bias
of low-degree nodes. This is because, compared with the vanilla
GCN, the classification accuracy of low-degree nodes are increased
while the classification accuracy of high-degree nodes are largely
retained, resulting in the significantly improved overall accuracy.

In Figure 3, we visualize how RawlsGCN-Graph and RawlsGCN-
Grad benefit the low-degree nodes and balances the performance
between low-degree nodes and high-degree nodes. From the figure,
we observe that both RawlsGCN-Graph (Figure 3b) and Rawls-
GCN-Grad (Figure 3c) show lower average loss values and higher
average classification accuracy compared with GCN (Figure 3a).
Moreover, to visualize how our proposed methods balance the per-
formance between low-degree nodes and high-degree nodes, we
perform linear regression on the average loss and average accuracy

consult with the original authors for a sanity check. For DSGCN, we implement our
own PyTorch version due to the lack of publicly available implementation.
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Table 3: Effectiveness for node classification. Lower is better for bias (in gray).Higher is better for accuracy (Acc., in percentage).

Method

Cora-ML Citeseer Coauthor-CS

Acc. Bias Acc. Bias Acc. Bias

GCN 80.10 ± 0.812 0.392 ± 0.046 68.60 ± 0.341 0.353 ± 0.040 93.28 ± 0.194 0.075 ± 0.004
DEMO-Net 61.60 ± 0.687 0.181 ± 0.015 60.26 ± 0.408 0.315 ± 0.022 65.90 ± 0.583 0.164 ± 0.006
DSGCN 30.26 ± 5.690 8.003 ± 2.766 31.42 ± 3.257 6.887 ± 1.947 44.20 ± 7.155 1.460 ± 0.397
Tail-GNN 78.54 ± 0.582 0.503 ± 0.284 66.34 ± 0.009 0.655 ± 0.382 92.66 ± 0.196 0.052 ± 0.031
AdvFair 67.56 ± 2.594 10.01 ± 2.480 50.26 ± 6.277 3.146 ± 2.425 84.82 ± 2.254 12.26 ± 6.797
REDRESS 75.70 ± 0.620 0.955 ± 0.213 65.80 ± 0.518 0.944 ± 0.077 92.44 ± 0.233 0.028 ± 0.003

RawlsGCN-Graph (Ours) 76.96 ± 1.098 0.105 ± 0.012 69.34 ± 0.745 0.196 ± 0.013 92.52 ± 0.264 0.043 ± 0.002
RawlsGCN-Grad (Ours) 79.34 ± 1.247 0.232 ± 0.065 68.81 ± 0.462 0.283 ± 0.047 92.68 ± 0.240 0.058 ± 0.007

Method

Coauthor-Physics Amazon-Computers Amazon-Photo

Acc. Bias Acc. Bias Acc. Bias

GCN 93.96 ± 0.367 0.023 ± 0.001 64.84 ± 0.641 0.353 ± 0.026 79.58 ± 1.507 0.646 ± 0.038
DEMO-Net 77.50 ± 0.566 0.084 ± 0.010 26.48 ± 3.455 0.456 ± 0.021 39.92 ± 1.242 0.243 ± 0.013
DSGCN 79.08 ± 1.533 0.262 ± 0.075 27.68 ± 1.663 1.407 ± 0.685 26.76 ± 3.387 0.921 ± 0.805
Tail-GNN OOM OOM 76.24 ± 1.491 1.547 ± 0.670 86.00 ± 2.715 0.471 ± 0.264
AdvFair 87.44 ± 1.132 0.892 ± 0.502 53.50 ± 5.362 4.395 ± 1.102 75.80 ± 3.563 51.24 ± 39.94
REDRESS 94.48 ± 0.172 0.019 ± 0.001 80.36 ± 0.206 0.455 ± 0.032 89.00 ± 0.369 0.186 ± 0.030

RawlsGCN-Graph (Ours) 94.06 ± 0.196 0.016 ± 0.000 80.16 ± 0.859 0.121 ± 0.010 88.58 ± 1.116 0.071 ± 0.006
RawlsGCN-Grad (Ours) 94.18 ± 0.306 0.021 ± 0.002 74.18 ± 2.530 0.195 ± 0.029 83.70 ± 0.672 0.186 ± 0.068
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Figure 3: Visualization on how our proposed RawlsGCN algorithms improve the performance of low-degree nodes on the

Amazon-Photo dataset. (a) shows the results for vanilla GCN. (b) shows the results forRawlsGCN-Graph. (c) shows the results

for RawlsGCN-Grad. Similar to Figure 1, blue dots refer to the average loss (Avg. Loss) and average accuracy (Avg. Acc.) of a

specific degree group in the top and bottom figures, respectively. Black lines are the regression lines of the blue dots in each

figure. For a more clear visualization, we only consider the degree groups which contain more than five nodes.

with respect to node degree. From the figure, we can see that the
slope of the regression lines for RawlsGCN-Graph and RawlsGCN-
Grad are flatter than the slope of the regression line in GCN.
Efficiency results. We measure the memory and time consump-
tion of all methods in Table 4. In the table, GCN (100 epochs) and
GCN (200 epochs) denote the GCN models trained with 100 epochs
and 200 epochs, respectively. From the table, we have two key
observations: (1) Compared with other baseline methods, Rawls-
GCN-Graph and RawlsGCN-Grad have fewer number of parame-
ters to learn and are much more efficient in memory consumption;
(2) RawlsGCN-Graph and RawlsGCN-Grad bear almost the same
training time as the vanilla GCN with 100 epochs of training (i.e.,
GCN (100 epochs)) while all other baseline methods significantly
increase the training time.

Table 4: Efficiency of training a 2-layer GCN on the Amazon-

Photo dataset. Lower is better for all columns. GPUmemory

usage (Memory) is measured in MB. Training time is mea-

sured in seconds.

Method # Param. Memory Training Time

GCN (100 epochs) 48, 264 1, 461 13.335
GCN (200 epochs) 48, 264 1, 461 28.727

DEMO-Net 11, 999, 880 1, 661 9158.5
DSGCN 181, 096 2, 431 2714.8
Tail-GNN 2, 845, 567 2, 081 94.058
AdvFair 89, 280 1, 519 148.11
REDRESS 48, 264 1, 481 291.69

RawlsGCN-Graph (Ours) 48, 264 1, 461 11.783
RawlsGCN-Grad (Ours) 48, 264 1, 461 12.924
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Table 5: Ablation study of different matrix normalization

techniques on the Amazon-Photo. Lower is better for bias

(in gray). Higher is better for accuracy (Acc., in percentage).

Method Normalization Acc. Bias

RawlsGCN-Graph

Row 87.98 ± 0.791 0.076 ± 0.006
Column 88.32 ± 2.315 0.138 ± 0.112

Symmetric 89.12 ± 0.945 0.071 ± 0.005
Doubly Stochastic 88.58 ± 1.116 0.071 ± 0.006

RawlsGCN-Grad

Row 82.86 ± 1.139 0.852 ± 0.557
Column 84.96 ± 1.235 0.221 ± 0.064

Symmetric 82.92 ± 1.121 0.744 ± 0.153
Doubly Stochastic 83.70 ± 0.672 0.186 ± 0.068

4.3 Ablation Study

To evaluate the effectiveness of the doubly stochastic normalization
on the renormalized graph Laplacian, we compare it with three
other normalization methods, including row normalization, column
normalization and symmetric normalization. As shown in Table 5,
while all these normalization methods lead to similar accuracy
(within 2% difference), doubly stochastic normalization leads to a
much smaller bias than others.
5 RELATEDWORK

Graph neural network is an emerging research topic due to its
strong empirical performance in many tasks like classification [14],
regression [15] and recommendation [30]. Bruna et al. [4] propose
the Graph Convolutional Neural Networks (GCNNs) by simulating
the convolution operation in the spectrum of graph Laplacian. Kipf
et al. [18] propose the Graph Convolutional Networks (GCNs) that
aggregates the neighborhood information inspired by the localized
first-order approximation of spectral graph convolution. Hamilton
et al. [12] propose GraphSAGE that learns node representation in
the inductive setting. Atwood et al. [2] propose a diffusion-based
graph convolution operation that aggregates the neighborhood in-
formation through the graph diffusion process. Veličković et al. [29]
introduce the multi-head self-attention mechanism into graph neu-
ral networks. Regarding graph neural networks for degree-aware
representation learning, Wu et al. [31] propose two methods (i.e.,
hashing function and degree-specific weight function) to learn
degree-specific representations for node and graph classification.
Liu et al. [20] learns robust embeddings for low-degree nodes (i.e.,
tail nodes) by introducing a novel neighborhood translation opera-
tion to predict missing information for the tail nodes and utilizing
a discriminator to differentiate the head node embeddings and tail
node embeddings. Different from [20, 31], our work directly im-
proves the performance on low-degree nodes without relying on
any additional degree-specific weights or degree-aware operations.

Fair graph mining has attracted much research attention re-
cently. In terms of group fairness, it has been incorporated into
several graph mining tasks, including ranking, clustering, node
embedding and graph neural networks. Tsioutsiouliklis et al. [28]
propose two fairness-aware PageRank algorithms (i.e., fairness-
sensitive PageRank and locally fair PageRank) to ensure a certain
proportion of total PageRank mass is assigned to nodes in a specific
demographic group. Kleindessner et al. [19] propose fair spectral
clustering which aims to ensure each demographic group is repre-
sented with the same fraction as in the whole dataset in all clusters.
Bose et al. [3] study the compositional fairness for graph embed-
ding, which aims to debias the node embeddings with respect to a

combination of sensitive attributes. Rahman et al. [23] modify the
random walk procedure in node2vec [10] so that neighbors in the
minority demographic group enjoy a higher probability of being
reached. Buyl et al. [5] debias the embeddings by injecting bias in-
formation in the prior of conditional network embedding [16]. Dai
et al. [7] promote statistical parity and equal opportunity in graph
neural networks through adversarial learning. Individual fairness
is another fundamental fairness notion. Kang et al. [17] present the
first effort on individually fair graph mining through Laplacian reg-
ularization on the pairwise node similarity matrix. Dong et al. [9]
incorporate ranking-based individual fairness into graph neural
networks inspired by learning-to-rank. However, neither group
fairness nor individual fairness is suitable to solve our problem. For
group fairness, the low-degree nodes are often the majority group
due to the long-tailed degree distribution. For individual fairness, it
only considers fairness in node level by considering the similarity
between two nodes, whereas our problem considers fairness in
group level in which the groups are defined by node degrees. Many
other fairness notions are also studied in graph mining. Agarwal et
al. [1] exploit the connection between counterfactual fairness and
stability to learn fair and robust node embeddings. Tang et al. [27]
propose a RNN-based degree-specific weight generator with self-
supervised learning to mitigate the degree-related bias. Our work
differs from [27] because we do not change the GCN architecture
and do not introduce any degree-specific weights. Rahmattalabi
et al. [24] incorporate Rawlsian difference principle to the graph
covering problem. Different from [24] that deals with a combina-
torial problem, we are the first to introduce such fairness notion
in graph neural networks without compromising its differentiable
end-to-end paradigm.
6 CONCLUSION

In this paper, we introduce the Rawlsian difference principle to
Graph Convolutional Network (GCN), where we aim to mitigate
degree-related unfairness. We formally define the problem of en-
forcing the Rawlsian difference principle on GCN as balancing the
loss among groups of nodes with the same degree. Based on that,
we reveal the mathematical root cause of degree-related unfairness
by studying the computation of the gradient of weight parameters
in GCN. Guided by its computation, we propose a pre-processing
method named RawlsGCN-Graph and an in-processing method
named RawlsGCN-Grad to mitigate the degree-related unfairness.
Both methods rely on the Sinkhorn-Knopp algorithm in computing
the doubly stochastic matrix of the graph Laplacian, which is guar-
anteed to converge in the context of GCN. Extensive evaluation on
six real-world datasets demonstrate the effectiveness and efficiency
of our proposed methods. In the future, we will investigate how to
generalize our methods to other graph neural networks.
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APPENDIX

A – RawlsGCN-Graph vs. RawlsGCN-Grad

Here, we discuss the advantages and disadvantages of our proposed
methods. We list the pros and cons of our proposed methods in Ta-
ble 6. Moreover, though RawlsGCN-Graph and RawlsGCN-Grad
have the same pre-processing procedure in the setting of fixed
input graph, we believe that the general idea of normalizing the
gradient in RawlsGCN-Grad is useful for distributed training of
extremely large graphs, in which a local subgraph of each node
is often sampled using a (non-)deterministic sampler for feature
aggregation and gradient computation. In this setting, the input
graph is not deterministic during training and often asymmetric.
Consequently, it is often impossible to precompute the doubly sto-
chastic matrix for RawlsGCN-Graph. However, we can still use the
sampling distribution of local subgraph to calculate the normalized
gradient using Eqs. (10) and (11).

Table 6: Pros and cons of our proposed methods.

RawlsGCN-Graph RawlsGCN-Grad

Pros

• No need to modify the
GNN model;

• Higher accuracy on
graph with more diverse
degree empirically;

• Smaller bias than
RawlsGCN-Grad.

• Higher accuracy on
graph with less diver-
sity in node degree
empirically;

• Able to work in use
cases like distributed
training of large graphs.

Cons

• Lower accuracy on
smaller graph/graph
with less diversity in
node degree empirically;

• May be unable to work
in use cases like dis-
tributed training on ex-
tremely large graphs.

• Slightly higher bias than
RawlsGCN-Graph;

• Need to change the opti-
mizer of model.

B – Descriptions of Baseline Methods

• GCN [18] refers to the original Graph Convolutional Network
(GCN) without fairness considerations. In our experiment, we
adopt the same architecture as in [18] but increasing the hidden
dimension to 64 for a fair comparison.

• DEMO-Net [31] uses multi-task graph convolution where each
task learns degree-specific node representations in order to pre-
serve the degree-specific graph structure. We use DEMO-Net
with degree-specific weight function instead of hashing function
due to its higher classification accuracy and better stability. For
a fair comparison, we remove the components for order-free and
seed-oriented representation learning as they are irrelevant to
fairness w.r.t. node degree.

• DSGCN [27] mitigates degree-related bias by degree-specific
graph convolution, which infers the degree-specific weights us-
ing a Recurrent Neural Network (RNN). We use 2 degree-specific

graph convolution layers in DSGCNwith the same hidden dimen-
sion settings as the vanilla GCN. We set the number of RNN cell
to 10 (i.e., nodes with degree larger than 10 will share the same
degree-specific weight), which is consistent with [27]. We set the
activation function of the RNN cell to tanh function. For a fair
comparison, we only use the degree-specific graph convolution
module (i.e., DSGCN in [27]) for our experiments.

• Tail-GNN [20] learns robust embedding for low-degree nodes
(i.e., tail nodes) in an adversarial learning fashion with the novel
neighborhood translation mechanism. It first generates forged
tail nodes from nodes with degree higher than a certain thresh-
old 𝑘 . Then the neighborhood translation operation predicts the
missing information of tail nodes and forged tail nodes by a trans-
lation model learned from head nodes. After that, a discriminator
is applied to predict whether a node is head or tail based on the
node representations. In our experiment, we set 𝑘 = 5 for forged
tail nodes generation. If a training node 𝑢 has degree less than 𝑘 ,
we do not generate the forged tail node using this training node.

• Adversarial Fair GCN (AdvFair) is a variant of [3] which en-
sures group fairness for graph embeddings in the compositional
setting (i.e., for different combinations of sensitive attributes).
We set the node degree as the sensitive attribute, i.e., nodes of the
same degree form a demographic group. For a fair comparison,
we compute the node embeddings using 2 graph convolution
layers with ReLU activation, each of which has 64 hidden di-
mension. The ‘filtered’ embeddings are computed by the filter,
which is a 2-layer multi-layer perceptron (MLP) with 128 and 64
hidden dimensions, respectively. The discriminator is a 2-layer
MLP where the first layer contains 64 hidden dimensions and
the second layer predicts the sensitive attribute of each node.
Both the filter and the discriminator use leaky ReLU as the acti-
vation function. A multi-class logistic regression is applied on
the ‘filtered’ embeddings for node classification.

• REDRESS [9] ensures individual fairness of graph neural net-
work (GNN) by optimizing the similarity between the ranking
lists of model input and output. In our experiment, we set the
backbone GNN model as the vanilla GCN model described above.

Table 7: Additional effectiveness results for node classifica-

tion on Chameleon dataset. Lower is better for bias (the gray

column). Higher is better for accuracy (Acc., in percentage).

Method

Chameleon

Acc. Bias

GCN 60.09 ± 1.047 0.504 ± 0.118
DEMO-Net 63.77 ± 0.955 0.352 ± 0.015
DSGCN 47.76 ± 1.978 0.129 ± 0.019
Tail-GNN 58.73 ± 1.794 1.040 ± 0.654
AdvFair 42.54 ± 8.499 0.276 ± 0.194
REDRESS 23.77 ± 2.745 0.020 ± 0.005

RawlsGCN-Graph (Ours) 50.61 ± 0.526 0.098 ± 0.007
RawlsGCN-Grad (Ours) 45.92 ± 2.741 0.138 ± 0.062

C – Parameter Settings

In this section, we provide additional parameter settings for the
purpose of reproducibility, including the settings for learning rate
and training epochs of baseline methods. For RawlsGCN-Graph,
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Table 8: Additional ablation study of different matrix normalization techniques. Lower is better for bias (i.e., the gray column).

Higher is better for accuracy (Acc.).

Method Normalization

Cora-ML Citeseer Coauthor-CS

Acc. Bias Acc. Bias Acc. Bias

RawlsGCN-Graph

Row 79.74 ± 0.320 0.098 ± 0.004 69.18 ± 0.595 0.240 ± 0.013 92.78 ± 0.331 0.052 ± 0.002
Column 76.78 ± 1.360 0.260 ± 0.330 69.12 ± 0.781 0.243 ± 0.093 92.44 ± 0.609 0.049 ± 0.012

Symmetric 77.04 ± 1.606 0.109 ± 0.015 69.20 ± 0.735 0.196 ± 0.014 92.56 ± 0.120 0.042 ± 0.001
Doubly Stochastic 76.98 ± 1.098 0.105 ± 0.012 69.34 ± 0.745 0.196 ± 0.013 92.52 ± 0.264 0.043 ± 0.002

RawlsGCN-Grad

Row 79.78 ± 0.349 0.230 ± 0.017 68.64 ± 0.215 0.274 ± 0.036 92.92 ± 0.440 0.069 ± 0.006
Column 79.94 ± 0.599 0.253 ± 0.077 68.48 ± 0.204 0.302 ± 0.049 92.78 ± 0.407 0.058 ± 0.006

Symmetric 79.68 ± 0.458 0.199 ± 0.008 68.68 ± 0.248 0.286 ± 0.042 93.00 ± 0.341 0.063 ± 0.006
Doubly Stochastic 79.34 ± 1.247 0.232 ± 0.065 68.81 ± 0.462 0.283 ± 0.047 92.68 ± 0.240 0.058 ± 0.007

Method Normalization

Coauthor-Physics Amazon-Computers

Acc. Bias Acc. Bias

RawlsGCN-Graph

Row 94.36 ± 0.488 0.013 ± 0.000 78.54 ± 1.125 0.092 ± 0.013
Column 93.98 ± 0.508 0.016 ± 0.003 78.18 ± 4.354 0.196 ± 0.106

Symmetric 93.98 ± 0.248 0.016 ± 0.000 80.22 ± 0.803 0.126 ± 0.012
Doubly Stochastic 94.06 ± 0.196 0.016 ± 0.000 80.16 ± 0.859 0.121 ± 0.010

RawlsGCN-Grad

Row 94.08 ± 0.204 0.027 ± 0.001 63.46 ± 1.376 0.453 ± 0.039
Column 94.26 ± 0.294 0.020 ± 0.002 75.48 ± 1.273 0.218 ± 0.033

Symmetric 94.30 ± 0.346 0.021 ± 0.001 66.42 ± 0.584 0.353 ± 0.021
Doubly Stochastic 94.18 ± 0.306 0.021 ± 0.002 74.18 ± 2.530 0.195 ± 0.029

RawlsGCN-Grad and Adversarial Fair GCN, we search the learning
rate that achieves the highest average classification accuracy in
the set of {0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025}. For DSGCN,
due to its long running time, we search the learning rate in the
set of {0.05, 0.025, 0.01, 0.005}. For GCN, DEMO-Net, Tail-GNN
and REDRESS, we use the suggested hyperparameters (including
learning rate, weight decay, number of epochs and early stopping
conditions) in the released source code. In addition, for REDRESS,
we search the best choice of 𝛼 (see details in [9]) in the range of
{10−5, 10−4, 10−3, 10−2, 10−1}. For Adversarial Fair GCN, we train
the model for 1000 epochs with a patience of 200 for early stopping.
For DSGCN, due to long training time, we train the model for 200
epochs without early stopping, which is consistent with the settings
in GCN.

D – Additional Results on Heterophilic Graph

Different from datasets listed in Section 4.1, a heterophilic graph
consists of linked nodes that are likely to have dissimilar features or
different class labels. We conduct additional experiments on a com-
monly used heterophilic graph named Chameleon dataset [21]. It
contains 2, 277 nodes which are Wikipedia pages about chameleons.
Each node has 2, 325 features which correspond to informative
nouns in the Wikipedia pages. Two nodes are connected if they

have mutual link(s) between two pages, which forms 36, 101 edges.
We follow the same experimental settings in Section 4.1 for (1)
generating training/validation/test sets, (2) training model and (3)
evaluating results. The experimental result on Chameleon dataset is
listed in Table 7. From the table, we have the following observations.
(1) Though REDRESS achieves smaller bias than RawlsGCN-Graph
and RawlsGCN-Grad, its accuracy is severely reduced compared
to GCN; (2) Though DSGCN outperforms RawlsGCN-Grad with
slightly higher accuracy and smaller bias, it fails to outperform
RawlsGCN-Graph; (3) Except for these two cases, our proposed
methods achieve the smallest bias compared with all other base-
line methods. Overall, our methods still achieve the best trade-off
between the accuracy and bias.

E – Additional Ablation Study Results

We provide additional ablation study on other datasets listed in
Section 4.1. From the Table 8, we observe that, although row nor-
malization and symmetric normalization outperforms the doubly
stochastic normalization in some cases, it can also increase the
bias in other cases, e.g., Amazon-Computers and Amazon-Photo
(shown in Table 5 in Section 4.1). All in all, the doubly stochastic
normalization is the best one that (1) consistently mitigates bias for
both RawlsGCN-Graph and RawlGCN-Grad, and (2) achieves good
balance between accuracy and fairness.
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