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Ubiquity of Graphs @

Social Network Analysis Drug Discovery Recommendation

Fraud Detection Question Answering

This Presentation: Graph = Network




Graph Convolutional Network (GCN) @

O

* Key idea: Learn node representations by aggregating information
from the neighbors — a.k.a. graph convolution

* GCN: A stack of graph convolution layers

HO = O-(A\H(l_l)w(l)‘)\ model weights
—~ ~_1 1
-« A=DzZ(A+D)D2 \ _ _
+ D = degree matrix of A + I renormalized graph Laplacian

Graph Convolution Graph Convolution

| /‘\ E Hidden
Input Graph | ! Representation

[1] Kipf, T. N., & Welling, M.. Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017.
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Degree-related Unfairness C@L

* Observation: Low-degree node often has
— High loss
— Low predictive accuracy

* Example: Semi-supervised node classification
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Degree-related Unfairness ?@L

* Example: Online advertising
— Celebrities often enjoy high-quality recommendations
— Grassroot users often suffer from bad recommendations

Bad recommendations

@ ommended items




Degree Distribution ?@

* Node degree distribution is often long-tailed
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* GCN might
— Benefit a relatively small fraction of high-degree nodes
— Overlook a relatively large fraction of low-degree nodes

[1] Faloutsos, M., Faloutsos, P., & Faloutsos, C.. On Power-Law Relationships of the Internet Topology. CCR 1999.
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Prior Works @

DEMO-Net
— Degree-specific weight: Learn degree-specific weights, randomly initialized

SL-DSGCN

— Degree-specific weight: Learn degree-specific weights, generated by RNN
— Self-supervised learning: Generate pseudo labels for additional training signals

Tail-GNN
— Neighborhood translation mechanism: Infer missing neighborhood information
of low-degree nodes

Limitation 1: Additional number of weight parameters High cost of
— DEMO-Net, SL-DSGCN computational

Limitation 2: Change(s) to the GCN architecture resources
— SL-DSGCN, Tail-GNN

Question: How to mitigate degree-related unfairness without
— Hurting the scalability of GCN
— Changing the GCN architecture?

[1] Wu, J., He, J., & Xu, J.. DEMO-Net: Degree-Specific Graph Neural Networks for Node and Graph Classification. KDD 2019.
[2] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-Related Biases in Graph

Convolutional Networks. CIKM 2020. 7
[3] Liu, Z., Nguyen, T. K., & Fang, Y.. Tail-GNN: Tail-Node Graph Neural Networks. KDD 2021.




Fairness = Just Allocation of Utility [@L

* Intuition: Utility = resource to allocate

e Expected result: Similar utility (accuracy) for all nodes regardless of
their degrees

 Example

Allocation of Utility (Accuracy)
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Example: Fair Allocation of Utility ?@L

 Example: Fair online advertising

 Question: How to define such fairness?



Problem Definition [@L

* Given
— An undirected graph G = (A, X)
— An L-layer GCN with weights 0
— A task-specific loss |

* Find: A well-trained GCN that

— Minimizes the task-specific loss

— Achieves a fair allocation of utility for the groups of nodes with the same
degree

* Key question: When is the allocation of utility fair?

Fair Allocation of Utility (Accuracy)
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Rawilsian Difference Principle [@L

* Origin: Distributive justice
e Goal: Find a fair allocation of social welfare

“Inequalities are permissible when they maximize [...] the long-term
expectations of the least fortunate group.”

-- John Rawls, 1971

* Intuition: Treat utility of GCN as welfare to allocate

— Least fortunate group = group with the smallest utility
— Example: Classification accuracy for node classification

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.
* Justice as fairness * Well-ordered society

* Justice is a virtue of instituitions * Designed to advance the good of its members
* Free persons enjoy and acknowledge the rules * Regulated by a public conception of justice




Key Challenge: Fair Allocation of Utility @

* Key idea: Consider the stability of the Rawlsian difference
principle
* How to achieve the stability?

— Keep improving the utility of the least fortunate group

* When do we achieve the stability?
— No least fortunate group
— All groups have the balanced utility

* Challenge: Non-differentiable utility

— Workaround: Use loss function as the proxy of utility
— Rationale: Minimize loss in order to maximize utility

* Goal: Fair allocation of utility - balanced loss

I




Roadmap ?@L

* Motivation
* Theory: Source of Unfairness
* Algorithms: RawlsGCN

* Experiments

* Conclusion




Theory: Source of Unfairness ?@

* Intuition: Understand why the loss varies after training

* What happens during training?
— Extract node representations
— Predict the outcomes using the node representations
— Calculate the task-specific loss |

— Update model weights 0 by the gradient Z—é & key component for training

* Question: Is the unfairness caused by the gradient?

Graph Convolution Graph Convolution
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The Gradient of Model Weights

* Given

— An undirected graph G = (A, X) with A = ﬁ_é(A + I)ﬁ_%
— An arbitrary [-th graph convolution layer

* Weight matrix w®

« Hidden representations before activation E& = AH¢(-Dw®
— A task-specific loss |

* The gradient of loss | w.r.t. weight w®
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Source of Unfairness: Results @

J
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degree in A

is a linear summation of node influence weighted by its
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Op
Source of Unfairness: Column-wise Influence ¥
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degree in A

is a linear summation of node influence weighted by its
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Source of Unfairness: Row-wise Influence

J
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degree in A
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Source of Unfairness: Summary @

Gradient of loss w. rt welght

Intuitions

- H%COD and ]I](row) - The directions for gradient descent

— dz(i) and d;(j) - The importance of the direction

High degree - more focus on the corresponding direction

Question: \Why does the node degree vary in A?

o Node degree in A Node degree in A

©) 2] e da(1) =4 « di(1) =[1.26
e dy(2) =2 . dz(2) =|0.88

(4 o e dy(3) =3 . dz(3) =1.05

| .« da(4) =2 . ds(4) =0.88

Toy graph with « da(5) =1 R dK(S) =10,82

adjacency matrix A

Different node degrees




Symmetric Normalization @

* Key idea: Normalize the largest eigenvalue, but not degree
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Doubly Stochastic Matrix Computationm

J

owd
— Intuition: Enforce row sum and column sum of A to be 1

— Solution: Doubly stochastic normalization on A

?

* How to mitigate unfairness in

* Method: Sinkhorn-Knopp algorithm
— Key idea: Iteratively normalize the row and column of a matrix
— Complexity: Linear time and space complexity
— Convergence: Always converge iff. the matrix has total support

e Question: Can we find the doubly stochastic form of A?




Existence of Doubly Stochastic Matrix C@L

* Given
— An undirected graph G = (A, X)
— The degree matrix D of A + I

-~ 1 ~_
— The renormalized graph Laplacian A =D 2(A+1)D

1
2

* The Sinkhorn-Knopp algorithm always finds the unique
doubly stochastic form Apg of A
— (Check detailed proof in the paper)




Roadmap Cf@}

* Motivation
* Theory: Source of Unfairness
* Algorithms: RawlsGCN

* Experiments

* Conclusion




The Family of RawlsGCN ?@L

* Gradient computation

a] T d]
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— Key term: A5 — Doubly-stochastic normalization of A

* Proposed methods

— RawlsGCN-Graph: During data pre-processing, compute KDS
and treat it as the input of GCN

— RawlsGCN-Grad: During optimization (in-processing), treat Apg
as a normalizer to equalize the importance of node influence




RawlsGCN-Graph: Pre-processing ?@

* Intuition: Normalize the input renormalized graph
Laplacian into a doubly stochastic matrix

* Key steps
1. Precompute the renormalized graph Laplacian A

2. Precompute A\DS by applying the Sinkhorn-Knopp algorithm
3. Input KDS and X (node features) to GCN for training
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RawlsGCN-Grad: In-processing ?@

O

* Intuition: Equalize the importance of node influence in gradient computation

* Key steps
1. Precompute the renormalized graph Laplacian A
2. Input A and X (node features) to GCN
3. Compute KDS by applying the Sinkhorn-Knopp algorithm
4. Repeat until maximum number of training epochs
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Roadmap Cf@}

* Motivation
* Theory: Source of Unfairness
* Algorithms: RawlsGCN

* Experiments

* Conclusion




Experiments: Settings ?@L

* Task: Semi-supervised node classification

* Datasets
Name Nodes Edges Features Classes Median Deg.

Cora-ML 2,995 16,316 2,879 7 3

Citeseer 3,327 9,104 3,703 6 2

Coauthor-CS 18,333 163,788 6,805 15 6

Coauthor-Physics 34493 495924 8,415 5 10

Amazon-Computers | 13,752 491,722 767 10 22
Amazon-Photo 7,650 238,162 745 8 22

 Baseline methods

— Vanilla model: GCN
— Fairness-aware models: DEMO-Net, DSGCN, Tail-GNN,
Adversarial Fair GCN, REDRESS

* Metrics
— Utility: Classification Accuracy
— Bias: Variance of average loss values

I




Experiments: Node Classification

or
bl

O

Coauthor-Physics

Amazon-Computers

Amazon-Photo

Method
Acc. Bias Acc. Bias Acc. Bias

GCN 93.96 +£ 0.367 0.023 £0.001 64.84 £0.641 0.353+£0.026 79.58 £1.507 0.646 + 0.038

DEMO-Net 77.50 £ 0.566 = 0.084 £ 0.010 26.48 +£3.455 0.456 £ 0.021 39.92 +£1.242 @ 0.243 +£ 0.013

DSGCN 79.08 £ 1.533 = 0.262 £ 0.075 27.68 £1.663 @ 1.407 £ 0.685 26.76 £ 3.387 @ 0.921 + 0.805

Tail-GNN OOM OOM 76.24 +£1.491 1.547 £ 0.670 86.00 +£2.715 @ 0.471 + 0.264

AdvFair 87.44 +1.132 = 0.892 £ 0.502 53.50 +£5.362 4.395+1.102 75.80 +£3.563 @ 51.24 + 39.94

REDRESS 94.48 +£0.172 0. 019 + 0.001 80.36 +£0.206 0. 455 + 0.032 89.00 +£0.369 0.186 £ 0.030
RAWLSGCN-Graph (Ours) 94.06 + 0.196 16 + 0.000, 80.16 + 0.859 £0.121 % 0.010%, 88.58 + 1.116 £0.071 % 0.006™
RaAwLSGCN-Grad (Ours) 94.18 + 0.306 (21 + 0. (D 74.18 + 2.530 C95 + 0. @ 83.70 £ 0.672 @6 EE 0.0@

e Observations
— RawlsGCN achieves the smallest bias

— Classification accuracy can be improved
* mitigating the bias = higher accuracy for low-degree nodes

Higher overall accuracy




Experiments: Node Classification @
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 Observation: RawlsGCN achieves more balanced loss and
classification accuracy

— Flatter slope of the regression line for RawlsGCN (in orange)
than GCN (in blue)




Experiments: Efficiency ?@

Method # Param. | Memory | Training Time
GCN (100 epochs) 48, 264 1,461 13.335
GCN (200 epochs) 48, 264 1,461 28.727
DEMO-Net 11,999, 880 1,661 9158.5
DSGCN 181, 096 2,431 2714.8
Tail-GNN 2, 845, 567 2,081 94.058
AdvFair 89, 280 1,519 148.11
REDRESS 48, 264 1,481 291.69
RAWLSGCN-Graph (Ours) 48, 264 1,461 11.783
RAWLSGCN-Grad (Ours) 48, 264 1,461 12.924

* Observation: RawlsGCN has the best efficiency compared
with other baseline methods

— Same number of parameters and memory usage (in MB)
— Much shorter training time (in seconds)




Experiments: Ablation Study

Method Normalization Acc. Bias
Row 87.98 £0.791 = 0.076 + 0.006
Column 88.32 +2.315 0.138 £0.112
RAawLSGCN-Graph

rap Symmetric 89.12 + 0.945 = 0.071 % 0.005
Doubly Stochastic | 88.58 +1.116 €0.071 £ 0.006 )

Row 82.86 £ 1.139 = 0.852 + 0.557

Column 84.96 £ 1.235 0.221 + 0.064

RawLsGCEN-Grad Symmetric 82.92 +1.121 = 0.744 % 0.153
Doubly Stochastic | 83.70 +0.672 C0.186 + 0.068 )

)

* Observation: Doubly stochastic normalization is the best
normalization technique to balance accuracy and fairness




Roadmap Cf@}

* Motivation
* Theory: Source of Unfairness
* Algorithms: RawlsGCN

* Experiments

 Conclusion




Conclusion

* Problem: Enforce the Rawlsian difference prmC|Ie‘on GCN

8 Amazon-Compu;ers +| Amazon-Photo
* Source of unfairness )
o sl
— Analysis on the gradient w.r.t. model weights r" go;,”
— Doubly stochastic normalization on thegraph W | W
o Degree in A Degree in A
e Solution: RawlsGCN
— Pre-processing by RawlsGCN-Graph .. "a" .. " |
— In-processing by RawlsGCN-Grad 2 e e oo e gy T
10 e
* Results f -

— Effectiveness in bias mitigation while mamtalnmg accuracy

y =—0.0049x + 0.8331

— Significant improvement in efficiency ::
* More details in the paper -
— Proofs and analysis .
— Detailed experiments
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