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Ubiquity of Graphs
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Question Answering

Drug Discovery

Fraud Detection

Social Network Analysis Recommendation

Traffic Prediction 

This Presentation: Graph = Network



Graph Convolutional Network (GCN)
• Key idea: Learn node representations by aggregating information 

from the neighbors – a.k.a. graph convolution 
• GCN: A stack of graph convolution layers
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• $𝐃 = degree matrix of 𝐀 + 𝐈
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renormalized graph Laplacian

[1] Kipf, T. N., & Welling, M.. Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017.

model weights



Degree-related Unfairness
• Observation: Low-degree node often has

– High loss 
– Low predictive accuracy

• Example: Semi-supervised node classification
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Degree-related Unfairness
• Example: Online advertising 

– Celebrities often enjoy high-quality recommendations
– Grassroot users often suffer from bad recommendations
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Degree Distribution
• Node degree distribution is often long-tailed

• GCN might
– Benefit a relatively small fraction of high-degree nodes
– Overlook a relatively large fraction of low-degree nodes
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[1] Faloutsos, M., Faloutsos, P., & Faloutsos, C.. On Power-Law Relationships of the Internet Topology. CCR 1999.



Prior Works
• DEMO-Net

– Degree-specific weight: Learn degree-specific weights, randomly initialized
• SL-DSGCN

– Degree-specific weight: Learn degree-specific weights, generated by RNN
– Self-supervised learning: Generate pseudo labels for additional training signals

• Tail-GNN
– Neighborhood translation mechanism: Infer missing neighborhood information 

of low-degree nodes

• Limitation 1: Additional number of weight parameters
– DEMO-Net, SL-DSGCN

• Limitation 2: Change(s) to the GCN architecture
– SL-DSGCN, Tail-GNN

• Question: How to mitigate degree-related unfairness without 
– Hurting the scalability of GCN
– Changing the GCN architecture?
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[1] Wu, J., He, J., & Xu, J.. DEMO-Net: Degree-Specific Graph Neural Networks for Node and Graph Classification. KDD 2019.
[2] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-Related Biases in Graph
Convolutional Networks. CIKM 2020.
[3] Liu, Z., Nguyen, T. K., & Fang, Y.. Tail-GNN: Tail-Node Graph Neural Networks. KDD 2021.
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Fairness = Just Allocation of Utility
• Intuition: Utility = resource to allocate
• Expected result: Similar utility (accuracy) for all nodes regardless of 

their degrees
• Example
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Example: Fair Allocation of Utility
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• Example: Fair online advertising 

• Question: How to define such fairness?

Debiasing



Problem Definition
• Given

– An undirected graph 𝒢 = 𝐀, 𝐗
– An 𝐿-layer GCN with weights 𝛉
– A task-specific loss 𝐽

• Find: A well-trained GCN that
– Minimizes the task-specific loss
– Achieves a fair allocation of utility for the groups of nodes with the same 

degree

• Key question: When is the allocation of utility fair?
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Rawlsian Difference Principle
• Origin: Distributive justice
• Goal: Find a fair allocation of social welfare

“Inequalities are permissible when they maximize […] the long-term 
expectations of the least fortunate group.”

-- John Rawls, 1971
• Intuition: Treat utility of GCN as welfare to allocate

– Least fortunate group → group with the smallest utility
– Example: Classification accuracy for node classification
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[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.

• Justice as fairness
• Justice is a virtue of instituitions
• Free persons enjoy and acknowledge the rules

• Well-ordered society
• Designed to advance the good of its members
• Regulated by a public conception of justice



Key Challenge: Fair Allocation of Utility

• Key idea: Consider the stability of the Rawlsian difference 
principle
• How to achieve the stability?

– Keep improving the utility of the least fortunate group

• When do we achieve the stability? 
– No least fortunate group
– All groups have the balanced utility

• Challenge: Non-differentiable utility
– Workaround: Use loss function as the proxy of utility
– Rationale: Minimize loss in order to maximize utility

• Goal: Fair allocation of utility → balanced loss
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Roadmap
• Motivation
• Theory: Source of Unfairness
• Algorithms: RawlsGCN
• Experiments
• Conclusion
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Theory: Source of Unfairness
• Intuition: Understand why the loss varies after training

• What happens during training?
– Extract node representations 
– Predict the outcomes using the node representations
– Calculate the task-specific loss 𝐽
– Update model weights 𝛉 by the gradient !"

!𝛉
← key component for training

• Question: Is the unfairness caused by the gradient?
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The Gradient of Model Weights
• Given

– An undirected graph 𝒢 = 𝐀, 𝐗 with (𝐀 = )𝐃$
!
"(𝐀 + 𝐈))𝐃$

!
"

– An arbitrary 𝑙-th graph convolution layer
• Weight matrix 𝐖 "

• Hidden representations before activation 𝐄 " = !𝐀𝐇 "!# 𝐖 "

– A task-specific loss 𝐽

• The gradient of loss 𝐽 w.r.t. weight 𝐖 !

𝜕𝐽
𝜕𝐖 ! = 𝐇 !"# $$𝐀$

𝜕𝐽
𝜕𝐄 !
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Source of Unfairness: Results
• 45
4𝐖 ! is a linear summation of node influence weighted by its 
degree in !𝐀
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– 𝑗 ∼ 3𝒩 𝑖 : Sampling node 𝑗 from neighborhood of node 𝑖 in !𝐀
• Sampling probability is proportional to #𝐀[𝑖, 𝑗]
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𝑑(𝐀 3 = 1𝑑(𝐀 2 = 1 Higher importance due to higher degree



Source of Unfairness: Column-wise Influence

• 45
4𝐖 ! is a linear summation of node influence weighted by its 
degree in !𝐀
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– 𝑗 ∼ 3𝒩 𝑖 : Sampling node 𝑗 from neighborhood of node 𝑖 in !𝐀
• Sampling probability is proportional to #𝐀[𝑖, 𝑗]
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Source of Unfairness: Row-wise Influence

• 45
4𝐖 ! is a linear summation of node influence weighted by its 
degree in !𝐀
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– 𝑗 ∼ 3𝒩 𝑖 : Sampling node 𝑗 from neighborhood of node 𝑖 in !𝐀
• Sampling probability is proportional to #𝐀[𝑖, 𝑗]
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Source of Unfairness: Summary
• Gradient of loss w.r.t. weight

𝜕𝐽
𝜕𝐖 ! =/
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• Intuitions
– 𝕀*

+,- and 𝕀.
/,0 → The directions for gradient descent

– 𝑑(𝐀 𝑖 and 𝑑(𝐀 𝑗 → The importance of the direction

• High degree → more focus on the corresponding direction

• Question: Why does the node degree vary in $𝐀?

19

1
2

34

5
Node degree in 𝐀
• 𝑑𝐀 1 = 4
• 𝑑𝐀 2 = 2
• 𝑑𝐀 3 = 3
• 𝑑𝐀 4 = 2
• 𝑑𝐀 5 = 1

Node degree in !𝐀
• 𝑑3𝐀 1 = 1.26
• 𝑑3𝐀 2 = 0.88
• 𝑑3𝐀 3 = 1.05
• 𝑑3𝐀 4 = 0.88
• 𝑑3𝐀 5 = 0.82Toy graph with 

adjacency matrix 𝐀
Different node degrees 



Symmetric Normalization
• Key idea: Normalize the largest eigenvalue, but not degree

• Example
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Node 𝑎: 𝑑(𝐀 𝑎 = 2
Node 𝑏: 𝑑(𝐀 𝑏 = 1

𝕀1
+,-

𝕀2
+,-

2𝕀1
+,-

𝕀2
+,-

• Observation: High degree in A 
→ high degree in !𝐀

– 01
0𝐖 5 favors high-degree nodes in 
A due to such positive correlation

• Consequence: 45
4𝐖 ! calculated 

using !𝐀 is biased

Node degree takes no effect Node degree is considered

Biased direction –
Favor node 𝑎 by 
being closer to 𝕀1

+,-
Fair direction 



Doubly Stochastic Matrix Computation

• How to mitigate unfairness in 45
4𝐖 ! ?

– Intuition: Enforce row sum and column sum of !𝐀 to be 1 
– Solution: Doubly stochastic normalization on !𝐀

• Method: Sinkhorn-Knopp algorithm
– Key idea: Iteratively normalize the row and column of a matrix
– Complexity: Linear time and space complexity
– Convergence: Always converge iff. the matrix has total support

• Question: Can we find the doubly stochastic form of "𝐀? 
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Existence of Doubly Stochastic Matrix
• Given

– An undirected graph 𝒢 = 𝐀, 𝐗
– The degree matrix -𝐃 of 𝐀 + 𝐈

– The renormalized graph Laplacian !𝐀 = -𝐃G
*
+(𝐀 + 𝐈)-𝐃G

*
+

• The Sinkhorn-Knopp algorithm always finds the unique 
doubly stochastic form "𝐀67 of "𝐀

– (Check detailed proof in the paper)
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Roadmap
• Motivation
• Theory: Source of Unfairness
• Algorithms: RawlsGCN
• Experiments
• Conclusion
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The Family of RawlsGCN
• Gradient computation

𝜕𝐽
𝜕𝐖 8 9:;<

= 𝐇 8=> ?"𝐀67?
𝜕𝐽
𝜕𝐄 8

– Key term: !𝐀HI – Doubly-stochastic normalization of !𝐀
• Proposed methods

– RawlsGCN-Graph: During data pre-processing, compute !𝐀HI
and treat it as the input of GCN

– RawlsGCN-Grad: During optimization (in-processing), treat !𝐀HI
as a normalizer to equalize the importance of node influence
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RawlsGCN-Graph: Pre-processing
• Intuition: Normalize the input renormalized graph 

Laplacian into a doubly stochastic matrix
• Key steps

1. Precompute the renormalized graph Laplacian !𝐀
2. Precompute !𝐀HI by applying the Sinkhorn-Knopp algorithm
3. Input !𝐀HI and 𝐗 (node features) to GCN for training 
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RawlsGCN-Grad: In-processing
• Intuition: Equalize the importance of node influence in gradient computation

• Key steps
1. Precompute the renormalized graph Laplacian (𝐀
2. Input (𝐀 and 𝐗 (node features) to GCN
3. Compute (𝐀34 by applying the Sinkhorn-Knopp algorithm
4. Repeat until maximum number of training epochs

• Compute the fair gradient *+
*𝐖 ' 7890

= 𝐇 "!# )!𝐀:;)
*+
*𝐄 ' using !𝐀:;

• Update 𝐖 " by the fair gradient *+
*𝐖 ' 7890
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Roadmap
• Motivation
• Theory: Source of Unfairness
• Algorithms: RawlsGCN
• Experiments
• Conclusion
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Experiments: Settings
• Task: Semi-supervised node classification
• Datasets

• Baseline methods
– Vanilla model: GCN
– Fairness-aware models: DEMO-Net, DSGCN, Tail-GNN, 

Adversarial Fair GCN, REDRESS
• Metrics

– Utility: Classification Accuracy
– Bias: Variance of average loss values
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Experiments: Node Classification

• Observations
– RawlsGCN achieves the smallest bias
– Classification accuracy can be improved 

• mitigating the bias → higher accuracy for low-degree nodes
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Higher overall accuracy
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Experiments: Node Classification
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• Observation: RawlsGCN achieves more balanced loss and 
classification accuracy

– Flatter slope of the regression line for RawlsGCN (in orange) 
than GCN (in blue)



Experiments: Efficiency
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• Observation: RawlsGCN has the best efficiency compared 
with other baseline methods

– Same number of parameters and memory usage (in MB)
– Much shorter training time (in seconds)



Experiments: Ablation Study
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• Observation: Doubly stochastic normalization is the best 
normalization technique to balance accuracy and fairness



Roadmap
• Motivation
• Theory: Source of Unfairness
• Algorithms: RawlsGCN
• Experiments
• Conclusion
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Conclusion
• Problem: Enforce the Rawlsian difference principle on GCN
• Source of unfairness

– Analysis on the gradient w.r.t. model weights
– Doubly stochastic normalization on the graph

• Solution: RawlsGCN
– Pre-processing by RawlsGCN-Graph
– In-processing by RawlsGCN-Grad

• Results
– Effectiveness in bias mitigation while maintaining accuracy
– Significant improvement in efficiency

• More details in the paper
– Proofs and analysis
– Detailed experiments

34

Title: RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network
Authors: Jian Kang, Yan Zhu, Yinglong Xia, Jiebo Luo, Hanghang Tong
Website: http://jiank2.web.illinois.edu/
Email: jiank2@illinois.edu


