

RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network

Jian Kang¹

Yan Zhu² Yinglong Xia² Jiebo Luo^{2,3} Hanghang Tong¹ ¹University of Illinois at Urbana-Champaign ²Meta AI ³University of Rochester

Ubiquity of Graphs

Social Network Analysis Drug Discovery

Recommendation

Ι

This Presentation: Graph = Network

Graph Convolutional Network (GCN)

- Key idea: Learn node representations by aggregating information from the neighbors – a.k.a. graph convolution
- **GCN:** A stack of graph convolution layers $\mathbf{H}^{(l)} = \sigma(\widehat{\mathbf{A}}\mathbf{H}^{(l-1)}\mathbf{W}^{(l)}) - \text{model weights}$ • $\widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\widetilde{\mathbf{D}}^{-\frac{1}{2}}$ renormalized graph Laplacian $\widetilde{\mathbf{D}} = \text{degree matrix of } \mathbf{A} + \mathbf{I}$ • **Graph Convolution Graph Convolution** Hidden Layer Hidden Layer Hidden Input Graph Representation Output ReLU ReLU 2 3 2 3 3 3 2 2 3 2

[1] Kipf, T. N., & Welling, M.. Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017.

Degree-related Unfairness

- Observation: Low-degree node often has
 - High loss
 - Low predictive accuracy
- Example: Semi-supervised node classification

Degree-related Unfairness

• Example: Online advertising

- Celebrities often enjoy high-quality recommendations
- Grassroot users often suffer from bad recommendations

Degree Distribution

• Node degree distribution is often long-tailed

- GCN might
 - Benefit a relatively small fraction of high-degree nodes
 - Overlook a relatively large fraction of low-degree nodes

Prior Works

High cost of

resources

computational

- DEMO-Net
 - Degree-specific weight: Learn degree-specific weights, randomly initialized
- SL-DSGCN
 - **Degree-specific weight:** Learn degree-specific weights, generated by RNN
 - Self-supervised learning: Generate pseudo labels for additional training signals
- Tail-GNN
 - Neighborhood translation mechanism: Infer missing neighborhood information of low-degree nodes
- Limitation 1: Additional number of weight parameters
 - DEMO-Net, SL-DSGCN
- Limitation 2: Change(s) to the GCN architecture
 - SL-DSGCN, Tail-GNN
- Question: How to mitigate degree-related unfairness without
 - Hurting the scalability of GCN
 - Changing the GCN architecture?

[1] Wu, J., He, J., & Xu, J.. DEMO-Net: Degree-Specific Graph Neural Networks for Node and Graph Classification. KDD 2019.
 [2] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks. CIKM 2020.
 [3] Liu, Z., Nguyen, T. K., & Fang, Y.. Tail-GNN: Tail-Node Graph Neural Networks. KDD 2021.

Fairness = Just Allocation of Utility

- Intuition: Utility = resource to allocate
- Expected result: Similar utility (accuracy) for all nodes regardless of their degrees
- Example

Example: Fair Allocation of Utility

• Example: Fair online advertising

Ι

Problem Definition

• Given

- An undirected graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$
- An *L*-layer GCN with weights $\boldsymbol{\theta}$
- A task-specific loss J
- Find: A well-trained GCN that
 - Minimizes the task-specific loss
 - Achieves a fair allocation of utility for the groups of nodes with the same degree
- Key question: When is the allocation of utility fair?

Rawlsian Difference Principle

- Origin: Distributive justice
- Goal: Find a fair allocation of social welfare

"Inequalities are permissible when they maximize [...] the long-term expectations of the least fortunate group."

-- John Rawls, 1971

- Intuition: Treat utility of GCN as welfare to allocate
 - Least fortunate group ightarrow group with the smallest utility
 - Example: Classification accuracy for node classification

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.

- Justice as fairness
 - Justice is a virtue of instituitions
 - Free persons enjoy and acknowledge the rules
- Well-ordered society
 - Designed to advance the good of its members
 - Regulated by a public conception of justice

Key Challenge: Fair Allocation of Utility

- Key idea: Consider the stability of the Rawlsian difference principle
- How to achieve the stability?
 - Keep improving the utility of the least fortunate group
- When do we achieve the stability?
 - No least fortunate group
 - All groups have the balanced utility
- Challenge: Non-differentiable utility
 - Workaround: Use loss function as the proxy of utility
 - Rationale: Minimize loss in order to maximize utility
- Goal: Fair allocation of utility \rightarrow balanced loss

Roadmap

- Motivation
- Theory: Source of Unfairness
- Algorithms: RawlsGCN
- Experiments
- Conclusion

Theory: Source of Unfairness

- Intuition: Understand why the loss varies after training
- What happens during training?
 - Extract node representations
 - Predict the outcomes using the node representations
 - Calculate the task-specific loss J
 - Update model weights θ by the gradient $\frac{\partial J}{\partial \theta} \leftarrow$ key component for training
- Question: Is the unfairness caused by the gradient?

The Gradient of Model Weights

• Given

- An undirected graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ with $\widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\widetilde{\mathbf{D}}^{-\frac{1}{2}}$
- An arbitrary *l*-th graph convolution layer
 - Weight matrix $\mathbf{W}^{(l)}$
 - Hidden representations before activation $\mathbf{E}^{(l)} = \widehat{\mathbf{A}} \mathbf{H}^{(l-1)} \mathbf{W}^{(l)}$
- A task-specific loss J
- The gradient of loss J w.r.t. weight $\mathbf{W}^{(l)}$

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \left(\mathbf{H}^{(l-1)}\right)^T \widehat{\mathbf{A}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}$$

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \begin{bmatrix} \mathbf{w} & \mathbf{w}^{(l)} \\ \mathbf{w}^{(l)} & \mathbf{w}^{(l)} \end{bmatrix} = \begin{bmatrix} \mathbf{w} & \mathbf{w}^{(l)} \\ \mathbf{w}^{(l-1)} \end{bmatrix}_{T}^{T} \qquad \mathbf{w}^{(l)} = \begin{bmatrix} \mathbf{w} & \mathbf{w}^{(l)} \\ \mathbf{w}^{(l)} & \mathbf{w}^{(l)} \end{bmatrix}$$

Source of Unfairness: Results

• $\frac{\partial J}{\partial \mathbf{w}^{(l)}}$ is a linear summation of node influence weighted by its degree in $\widehat{\mathbf{A}}$

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \sum_{i=1}^{n} d_{\widehat{\mathbf{A}}}(i) \mathbb{I}_{i}^{(\text{col})} = \sum_{j=1}^{n} d_{\widehat{\mathbf{A}}}(j) \mathbb{I}_{j}^{(\text{row})}$$
$$- \mathbb{I}_{i}^{(\text{col})} = \left(\mathbb{E}_{j \sim \widehat{\mathcal{N}}(i)} \left[\mathbf{H}^{(l-1)}[j,:]\right]\right)^{T} \frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}$$
$$- \mathbb{I}_{j}^{(\text{row})} = \left(\mathbf{H}^{(l-1)}[j,:]\right)^{T} \mathbb{E}_{i \sim \widehat{\mathcal{N}}(j)} \left[\frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}\right]$$

 $-j \sim \widehat{\mathcal{N}}(i)$: Sampling node *j* from neighborhood of node *i* in $\widehat{\mathbf{A}}$

• Sampling probability is proportional to $\widehat{\mathbf{A}}[i, j]$

$$d_{\widehat{A}}(1) = 2$$

$$d_{\widehat{A}}(1) = 2$$

$$\frac{\partial J}{\partial W^{(l)}} = 2 \mathbb{I}_{1}^{(\text{col})} + \mathbb{I}_{2}^{(\text{col})} + \mathbb{I}_{3}^{(\text{col})}$$

$$d_{\widehat{A}}(2) = 1$$

$$d_{\widehat{A}}(3) = 1$$
Higher importance due to higher degree

Source of Unfairness: Column-wise Influence

• $\frac{\partial J}{\partial w^{(l)}}$ is a linear summation of node influence weighted by its degree in \widehat{A}

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \sum_{i=1}^{n} d_{\widehat{\mathbf{A}}}(i) \mathbb{I}_{i}^{(\text{col})} = \sum_{j=1}^{n} d_{\widehat{\mathbf{A}}}(j) \mathbb{I}_{j}^{(\text{row})}$$
$$- \mathbb{I}_{i}^{(\text{col})} = \left(\mathbb{E}_{j \sim \widehat{\mathcal{N}}(i)} \left[\mathbf{H}^{(l-1)}[j,:]\right]\right)^{T} \frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}$$
$$- \mathbb{I}_{j}^{(\text{row})} = \left(\mathbf{H}^{(l-1)}[j,:]\right)^{T} \mathbb{E}_{i \sim \widehat{\mathcal{N}}(j)} \left[\frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}\right]$$

 $-j \sim \widehat{\mathcal{N}}(i)$: Sampling node *j* from neighborhood of node *i* in $\widehat{\mathbf{A}}$

• Sampling probability is proportional to $\widehat{\mathbf{A}}[i, j]$

Source of Unfairness: Row-wise Influence

• $\frac{\partial J}{\partial \mathbf{w}^{(l)}}$ is a linear summation of node influence weighted by its degree in $\widehat{\mathbf{A}}$

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \sum_{i=1}^{n} d_{\widehat{\mathbf{A}}}(i) \mathbb{I}_{i}^{(\text{col})} = \sum_{j=1}^{n} d_{\widehat{\mathbf{A}}}(j) \mathbb{I}_{j}^{(\text{row})}$$
$$- \mathbb{I}_{i}^{(\text{col})} = \left(\mathbb{E}_{j \sim \mathcal{N}(i)} \left[\mathbf{H}^{(l-1)}[j,:]\right]\right)^{T} \frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}$$
$$- \mathbb{I}_{j}^{(\text{row})} = \left(\mathbf{H}^{(l-1)}[j,:]\right)^{T} \mathbb{E}_{i \sim \widehat{\mathcal{N}}(j)} \left[\frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}\right]$$

 $-j \sim \widehat{\mathcal{N}}(i)$: Sampling node *j* from neighborhood of node *i* in $\widehat{\mathbf{A}}$

• Sampling probability is proportional to $\widehat{\mathbf{A}}[i, j]$

Source of Unfairness: Summary

Gradient of loss w.r.t. weight

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \sum_{i=1}^{n} d_{\widehat{\mathbf{A}}}(i) \mathbb{I}_{i}^{(\text{col})} = \sum_{j=1}^{n} d_{\widehat{\mathbf{A}}}(j) \mathbb{I}_{j}^{(\text{row})}$$

- Intuitions
 - $\mathbb{I}_{i}^{(\text{col})}$ and $\mathbb{I}_{i}^{(\text{row})} \rightarrow$ The directions for gradient descent
 - $d_{\widehat{A}}(i)$ and $d_{\widehat{A}}(j) \rightarrow$ The importance of the direction
- High degree \rightarrow more focus on the corresponding direction
- **Question:** Why does the node degree vary in $\widehat{\mathbf{A}}$?

adjacency matrix A

Node degree in A

•
$$d_{A}(1) = 4$$

• $d_{A}(2) = 2$

 $d_{A}(3) = 3$

•
$$d_{A}(4) = 2$$

•
$$d_{\mathbf{A}}(5) = 1$$

Node degree in \widehat{A}

•
$$d_{\widehat{A}}(1) = 1.26$$

• $d_{\widehat{A}}(2) = 0.88$

•
$$d_{\widehat{A}}(3) = 1.05$$

•
$$d_{\widehat{A}}(4) = 0.88$$

•
$$d_{\widehat{A}}(5) = 0.82$$

Different node degrees

Symmetric Normalization

- **Key idea:** Normalize the largest eigenvalue, but not degree
- Observation: High degree in A \rightarrow high degree in $\widehat{\mathbf{A}}$
 - $-\frac{\partial J}{\partial \mathbf{w}^{(l)}}$ favors high-degree nodes in A due to such positive correlation

 $\mathbb{I}_{b}^{(\mathrm{col})}$

• **Consequence:** $\frac{\partial J}{\partial \mathbf{W}^{(l)}}$ calculated using $\widehat{\mathbf{A}}$ is biased

Example

Node $a: d_{\widehat{A}}(a) = 2$

Node $b: d_{\widehat{A}}(b) = 1$

Doubly Stochastic Matrix Computation

- How to mitigate unfairness in $\frac{\partial J}{\partial \mathbf{w}^{(l)}}$?
 - Intuition: Enforce row sum and column sum of $\widehat{\mathbf{A}}$ to be 1
 - Solution: Doubly stochastic normalization on \widehat{A}
- Method: Sinkhorn-Knopp algorithm
 - Key idea: Iteratively normalize the row and column of a matrix
 - Complexity: Linear time and space complexity
 - Convergence: Always converge iff. the matrix has total support
- Question: Can we find the doubly stochastic form of $\widehat{A}?$

Existence of Doubly Stochastic Matrix

Given

- An undirected graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$
- The degree matrix \widetilde{D} of A+I

– The renormalized graph Laplacian $\widehat{A}=\widetilde{D}^{-\frac{1}{2}}(A+I)\widetilde{D}^{-\frac{1}{2}}$

- The Sinkhorn-Knopp algorithm always finds the unique doubly stochastic form \widehat{A}_{DS} of \widehat{A}
 - (Check detailed proof in the paper)

Roadmap

- Motivation
- Theory: Source of Unfairness 🗹
- Algorithms: RawlsGCN
- Experiments
- Conclusion

The Family of RawlsGCN

Gradient computation

$$\left(\frac{\partial J}{\partial \mathbf{W}^{(l)}}\right)_{\text{fair}} = \left(\mathbf{H}^{(l-1)}\right)^T \widehat{\mathbf{A}}_{\text{DS}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}$$

– Key term: \widehat{A}_{DS} – Doubly-stochastic normalization of \widehat{A}

- Proposed methods
 - RawlsGCN-Graph: During data pre-processing, compute \widehat{A}_{DS} and treat it as the input of GCN
 - RawlsGCN-Grad: During optimization (in-processing), treat \widehat{A}_{DS} as a normalizer to equalize the importance of node influence

RawlsGCN-Graph: Pre-processing

- Intuition: Normalize the input renormalized graph Laplacian into a doubly stochastic matrix
- Key steps
 - 1. Precompute the renormalized graph Laplacian \widehat{A}
 - 2. Precompute \widehat{A}_{DS} by applying the Sinkhorn-Knopp algorithm
 - 3. Input \widehat{A}_{DS} and X (node features) to GCN for training

RawlsGCN-Grad: In-processing

- Intuition: Equalize the importance of node influence in gradient computation
- Key steps
 - 1. Precompute the renormalized graph Laplacian \widehat{A}
 - 2. Input \widehat{A} and X (node features) to GCN
 - 3. Compute \widehat{A}_{DS} by applying the Sinkhorn-Knopp algorithm
 - 4. Repeat until maximum number of training epochs
 - Compute the fair gradient $\left(\frac{\partial J}{\partial \mathbf{W}^{(l)}}\right)_{\text{fair}} = \left(\mathbf{H}^{(l-1)}\right)^T \widehat{\mathbf{A}}_{\text{DS}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}} \text{ using } \widehat{\mathbf{A}}_{\text{DS}}$
 - Update $\mathbf{W}^{(l)}$ by the fair gradient $\left(\frac{\partial J}{\partial \mathbf{W}^{(l)}}\right)_{\text{fair}}$

Doubly Stochastic

Roadmap

- Motivation
- Theory: Source of Unfairness 🗹
- Algorithms: RawlsGCN 🗹
- Experiments
- Conclusion

Experiments: Settings

• Task: Semi-supervised node classification

• Datasets

Name	Nodes	Edges	Features	Classes	Median Deg.
Cora-ML	2,995	16,316	2,879	7	3
Citeseer	3,327	9,104	3,703	6	2
Coauthor-CS	18,333	163,788	6,805	15	6
Coauthor-Physics	34,493	495,924	8,415	5	10
Amazon-Computers	13,752	491,722	767	10	22
Amazon-Photo	7,650	238,162	745	8	22

Baseline methods

- Vanilla model: GCN
- Fairness-aware models: DEMO-Net, DSGCN, Tail-GNN, Adversarial Fair GCN, REDRESS
- Metrics
 - Utility: Classification Accuracy
 - Bias: Variance of average loss values

Experiments: Node Classification

Method	Coauthor-Physics		Amazon-Computers		Amazon-Photo	
	Acc.	Bias	Acc.	Bias	Acc.	Bias
GCN	93.96 ± 0.367	0.023 ± 0.001	64.84 ± 0.641	0.353 ± 0.026	79.58 ± 1.507	0.646 ± 0.038
DEMO-Net	77.50 ± 0.566	0.084 ± 0.010	26.48 ± 3.455	0.456 ± 0.021	39.92 ± 1.242	0.243 ± 0.013
DSGCN	79.08 ± 1.533	0.262 ± 0.075	27.68 ± 1.663	1.407 ± 0.685	26.76 ± 3.387	0.921 ± 0.805
Tail-GNN	OOM	OOM	76.24 ± 1.491	1.547 ± 0.670	86.00 ± 2.715	0.471 ± 0.264
AdvFair	87.44 ± 1.132	0.892 ± 0.502	53.50 ± 5.362	4.395 ± 1.102	75.80 ± 3.563	51.24 ± 39.94
REDRESS	94.48 ± 0.172	0.019 ± 0.001	80.36 ± 0.206	0.455 ± 0.032	89.00 ± 0.369	0.186 ± 0.030
RAWLSGCN-Graph (Ours)	94.06 ± 0.196	0.016 ± 0.000	80.16 ± 0.859	0.121 ± 0.010	88.58 ± 1.116	0.071 ± 0.006
RAWLSGCN-Grad (Ours)	94.18 ± 0.306	0.021 ± 0.002	74.18 ± 2.530	0.195 ± 0.029	83.70 ± 0.672	0.186 ± 0.068

Observations

- RawlsGCN achieves the smallest bias
- Classification accuracy can be improved
 - mitigating the bias \rightarrow higher accuracy for low-degree nodes

Higher overall accuracy

Experiments: Node Classification

- Observation: RawlsGCN achieves more balanced loss and classification accuracy
 - Flatter slope of the regression line for RawlsGCN (in orange) than GCN (in blue)

Experiments: Efficiency

Method	# Param.	Memory	Training Time
GCN (100 epochs)	48, 264	1,461	13.335
GCN (200 epochs)	48, 264	1, 461	28.727
DEMO-Net	11, 999, 880	1,661	9158.5
DSGCN	181, 096	2,431	2714.8
Tail-GNN	2, 845, 567	2,081	94.058
AdvFair	89, 280	1, 519	148.11
REDRESS	48, 264	1, 481	291.69
RAWLSGCN-Graph (Ours)	48, 264	1, 461	11.783
RAWLSGCN-Grad (Ours)	48, 264	1, 461	12.924

- **Observation:** RawlsGCN has the best efficiency compared with other baseline methods
 - Same number of parameters and memory usage (in MB)
 - Much shorter training time (in seconds)

Experiments: Ablation Study

Method	Normalization	Acc.	Bias
	Row	87.98 ± 0.791	0.076 ± 0.006
PAWISCON Croph	Normalization Acc. Row 87.98 ± 0.791 Column 88.32 ± 2.315 Symmetric 89.12 ± 0.945 Doubly Stochastic 88.58 ± 1.116 Row 82.86 ± 1.139 Column 84.96 ± 1.235 Symmetric 82.92 ± 1.121 Doubly Stochastic 83.70 ± 0.672	0.138 ± 0.112	
KAWLSGCN-Graph		0.071 ± 0.005	
		0.071 ± 0.006	
	Row	82.86 ± 1.139	0.852 ± 0.557
PAWASCON Grad	Normalization Acc. N-Graph Row 87.98 ± 0.791 Symmetric 88.32 ± 2.315 Symmetric 89.12 ± 0.945 Doubly Stochastic 88.58 ± 1.116 N-Grad Row 82.86 ± 1.139 Column 84.96 ± 1.235 Symmetric 82.92 ± 1.121 Doubly Stochastic 83.70 ± 0.672	0.221 ± 0.064	
NAW LSOCIN-OIAU		0.744 ± 0.153	
		0.186 ± 0.068	

• **Observation:** Doubly stochastic normalization is the best normalization technique to balance accuracy and fairness

Roadmap

- Motivation
- Theory: Source of Unfairness 🗹
- Algorithms: RawlsGCN 🗹
- Experiments 🗹
- Conclusion

Conclusion

- **Problem:** Enforce the Rawlsian difference principle on GCN
- Source of unfairness
 - Analysis on the gradient w.r.t. model weights
 - Doubly stochastic normalization on the graph
- Solution: RawlsGCN
 - Pre-processing by RawlsGCN-Graph
 - In-processing by RawlsGCN-Grad
- Results
 - Effectiveness in bias mitigation while maintaining accuracy
 - Significant improvement in efficiency
- More details in the paper
 - Proofs and analysis
 - Detailed experiments

